Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
基本信息
- 批准号:9357658
- 负责人:
- 金额:$ 32.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsActive SitesAddressBioavailableBiochemicalBiologicalBiological ModelsBiologyBiomimeticsCatalysisChemicalsChemistryCommunitiesComplexComputer SimulationCoupledCyanidesDataDissociationDistalElectron TransportEnvironmentEnzymesFertilizersFreezingGenerationsGeometryGoalsGrantHybridsHydrogen BondingIndustrializationIronKineticsKnowledgeLifeLigandsMeasurementMeasuresMediatingMetalsMethodsModelingMolecular WeightMolybdoferredoxinNitrogenNitrogen FixationNitrogenaseNuclearPathway interactionsPatternPhysiologic pulsePlayProcessProtonsReducing AgentsResearchResearch PersonnelResearch SupportRestRoentgen RaysRoleSchemeSiteSolventsSpectrum AnalysisStressStructureStudy modelsSulfurSumSystemTechnologyTemperatureTestingTheoretical modelTransition ElementsUnited States National Institutes of HealthWorkabsorptioncatalystcofactorcold temperaturedensitydesignelectronic structurefascinateimprovedmetalloenzymenew technologypressureprogramsrapid techniquesample fixationscaffoldspectroscopic dataspectroscopic surveytheoriesvibration
项目摘要
Project Summary -‐‑ Functional LnFe-‐‑NxHy Models of Biological N2 Fixation
Nitrogenase (N2ase) is a metalloenzyme that mediates biological nitrogen fixation and is essential to life. As
such, the study of nitrogenase attracts intense scrutiny among the biology and chemistry communities.
Nonetheless, the mechanism by which nitrogenase enzymes promote the biological reduction of nitrogen
under ambient conditions remains a fascinating and unsolved problem. The broad goal of our research is to
evaluate the mechanisms by which a single iron site is able to mediate catalytic N2 reduction in synthetic
model systems and, by extension, in biology. The proposed program is to design and study biomimetic Fe-‐‑
NxHy model complexes to address this goal. Our experimental approach stresses functionally, rather than
structurally, faithful models of the iron-‐‑molybdenum cofactor (FeMoco). Low molecular weight Fe-‐‑NxHy
complexes will be developed to explore iron sites in low coordinate geometries that may accommodate
dinitrogen and other NxHy functionalities. We posit these geometries as relevant to Fe-‐‑NxHy intermediates of
the FeMoco. By analogy to the modes of Fe-‐‑mediated biocatalytic O2 reduction, two limiting single-‐‑site
mechanisms are emphasized. The first is an alternating mechanism, where successive H-‐‑atom transfers (via
H+/e-‐‑ steps) occur at the distal and proximal N-‐‑atoms of the Fe-‐‑N≡N subunit in an alternating fashion (e.g., Fe-‐‑
N=NH → Fe-‐‑NH=NH → Fe-‐‑NH-‐‑NH2→ Fe-‐‑NH2-‐‑NH2 → Fe-‐‑NH2 + NH3). The second is a distal mechanism,
where complete H-‐‑atom transfer at the distal N-‐‑atom to liberate an NH3 equivalent precedes transfers to the
proximal N-‐‑atom (e.g., Fe-‐‑N2 + 3 e-‐‑ + 3 H+ → Fe≡N + NH3). We also explore a new hybrid mechanism that first
invokes a distal intermediate (Fe=NNH2) that then crosses to an alternating intermediate (Fe-‐‑N2H4) before
releasing the first NH3 equivalent. We will use synthetic model complexes to test the viability of each of these
mechanistic pathways, and to understand how the nuclearity, local geometry, and electronic structure of Fe-‐‑
NxHy species control their relative stabilities and reactivity patterns. This knowledge will be applied to the
study, via spectroscopic, electrochemical, and theoretical methods, of the first examples of single-‐‑site iron
catalysts for N2-‐‑to-‐‑NH3 conversion that we discovered in the previous grant period, and towards the design of
new N2-‐‑fixing catalysts with enhanced efficiency. Regardless of the precise mechanism for nitrogen reduction
at the FeMoco, its ultimate solution will require comparison of spectroscopic data from the cofactor to related
data obtained for well-‐‑defined model complexes. We will therefore continue to collaborate with researchers
that specialize in spectroscopic studies of the FeMoco to make such comparisons, and other investigators with
expertise complementary to our own. In sum, the functional Fe-‐‑NxHy model chemistry proposed will continue
to play a critical role alongside current biochemical, spectroscopic, and theoretical model studies aimed at
unraveling the chemical mechanism of biological nitrogen fixation.
项目摘要-生物N2固定的双功能LnFe-NxHy模型
固氮酶(N2 ase)是介导生物固氮的金属酶,并且是生命所必需的。
因此,固氮酶的研究引起了生物和化学界的密切关注。
尽管如此,固氮酶促进氮的生物还原的机制
在环境条件下,仍然是一个迷人的和未解决的问题。我们研究的广泛目标是
评估单一铁位点能够介导合成中催化N2还原的机制。
模型系统,并通过扩展,在生物学中。拟议的计划是设计和研究仿生铁-镍-镍
NxHy模型复合物来解决这个目标。
结构上,铁-钼-钼辅因子(FeMoco)的忠实模型。低分子量Fe-钼-NxHy
将开发络合物以探索低坐标几何中的铁位点,
我们将这些几何构型与以下化合物的Fe-β-NxHy中间体相关:
通过类比Fe-β-介导的生物催化O2还原的模式,两个限制性的单β-位点
第一种是交替机制,其中连续的H-π-原子转移(通过
H+/e-步骤)以交替的方式发生在Fe-N≡N亚基的远端和近端N-原子处(例如, Fe-铁
N=NH → Fe-β-NH=NH → Fe-β-NH-β-NH 2 → Fe-β-NH 2-β-NH 2 → Fe-β-NH 2 + NH 3)。第二种是远端机制,
其中在远端N-碳-原子处的完全H-碳-原子转移以释放NH3当量先于转移到
邻近的N-β-原子(例如, 我们还探索了一种新的混合机制,即首先,
引发远端中间体(Fe= NNH 2),然后在形成前交叉形成交替中间体(Fe-N2--N2 H4)。
释放第一个NH3当量。我们将使用合成的模型复合物来测试这些化合物中的每一个的可行性。
机械途径,并了解如何核,局部几何,和电子结构的Fe-
NxHy物种控制它们的相对稳定性和反应性模式。
研究,通过光谱,电化学和理论方法,第一个例子的单一的铁
我们在上一个资助期发现的用于N2-β-到-β-NH3转化的催化剂,以及
具有更高效率的新型N2固定催化剂。无论氮还原的精确机理如何,
在FeMoco,其最终解决方案将需要将辅因子的光谱数据与相关的光谱数据进行比较。
因此,我们将继续与研究人员合作,
专门研究FeMoco的光谱学研究,以进行这种比较,其他研究人员与
总之,提出的功能性Fe-γ-NxHy模型化学将继续
与当前的生物化学、光谱学和理论模型研究一起发挥关键作用,
揭示了生物固氮的化学机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonas C Peters其他文献
Jonas C Peters的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonas C Peters', 18)}}的其他基金
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
7536221 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
8113712 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
10463720 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
8239324 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
9239394 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
6865169 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
7343267 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
8600286 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
8423702 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
10238858 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 32.63万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 32.63万 - 项目类别:
Discovery Grants Program - Individual