Al-driven automotive material selection and structural design for manufacturing
人工智能驱动的汽车制造材料选择和结构设计
基本信息
- 批准号:10083425
- 负责人:
- 金额:$ 26.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The automotive industry and road transport contribute significantly to the UK's net greenhouse emissions, with one-third attributable to this sector. Lightweight vehicle design plays a crucial role in reducing CO2 emissions, necessitating the intelligent use of materials and advancements in vehicle component manufacturing technologies. Component stamping, representing approximately 11% of total vehicle cost, is a critical area for innovation.Accurate simulation and prediction of stamping-induced defects in the sheet metal stamping industry rely on material formability data. While simulations offer cost and time savings by utilising material formability data, their complexity and limited accessibility to designers create challenges. Integrating Artificial Intelligence (AI) can enhance accuracy by capturing material forming behaviours, but the scarcity of high-fidelity material testing data needed for training remains an obstacle.Multi-X has developed leading material formability testing solutions for reproducing real manufacturing conditions, such as hot stamping. These tests have enabled the curation of high-fidelity datasets of formability properties for structural materials used in various manufacturing processes and conditions. This project aims to leverage Multi-X's datasets to train and enhance the cutting-edge AI models developed by Dr Li and her Advanced Manufacturing Group at Imperial College London to extend their applicability to efficiently and accurately predicting vehicle component manufacturability under real conditions. By harnessing the high-fidelity data from Multi-X's testing, the AI models can ensure the optimal design of lightweight components within safe strain limits of metals thereby mitigating undesirable failures efficiently.This project will revolutionise vehicle manufacturing by introducing a game-changing, user-accessible design tool, offered through the Software-as-a-Service (SaaS) delivery mode. This tool will optimise complex-shaped component design, select lightweight materials, reduce development time, and lower costs. With accurate AI-based manufacturability evaluations replacing traditional simulations, the project will contribute to reducing CO2 emissions through the creation of efficient and lightweight component designs.
汽车工业和道路运输对英国的净温室气体排放量贡献很大,其中三分之一可归因于该部门。轻量化车辆设计在减少二氧化碳排放方面起着至关重要的作用,需要智能使用材料和改进车辆部件制造技术。零部件冲压约占汽车总成本的11%,是创新的关键领域。在钣金冲压行业中,精确模拟和预测冲压引起的缺陷依赖于材料的可成形性数据。虽然模拟通过利用材料可成形性数据节省了成本和时间,但其复杂性和对设计师的有限可访问性带来了挑战。集成人工智能(AI)可以通过捕捉材料成形行为来提高精度,但训练所需的高保真材料测试数据的稀缺仍然是一个障碍。Multi-X开发了领先的材料成形性测试解决方案,用于再现真实的制造条件,例如热冲压。这些测试使在各种制造工艺和条件下使用的结构材料的可成形性的高保真数据集的管理成为可能。该项目旨在利用Multi-X的数据集来训练和增强由李博士和她在伦敦帝国理工学院的先进制造小组开发的尖端人工智能模型,以扩展其适用性,从而在真实的条件下有效准确地预测车辆部件的可制造性。通过利用Multi-X测试的高保真数据,人工智能模型可以确保在金属的安全应变范围内优化轻量化部件的设计,从而有效地减少不良故障。该项目将通过引入改变游戏规则的用户可访问的设计工具,通过软件即服务(SaaS)交付模式提供,从而彻底改变汽车制造业。该工具将优化复杂形状的部件设计,选择轻质材料,减少开发时间并降低成本。通过准确的基于人工智能的可制造性评估取代传统的模拟,该项目将通过创建高效和轻量化的组件设计来减少二氧化碳排放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 26.06万 - 项目类别:
Studentship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
- 批准号:
2404149 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 26.06万 - 项目类别:
Continuing Grant