Data-driven optimization of therapy for heart failure

数据驱动的心力衰竭治疗优化

基本信息

  • 批准号:
    10467277
  • 负责人:
  • 金额:
    $ 57.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT This collaborative project integrates concepts from engineering, artificial intelligence, computer modeling, physiology, and clinical cardiology to explore new therapeutic strategies for patients who have heart failure. The moonshot goal is a simulation framework that can predict how a patient's heart will grow and remodel during a potential therapeutic intervention. Once the framework has been validated with patient data, it could be deployed to compare the outcomes predicted for different treatments. A clinician could then use the predictions to guide their choice of therapy. This project seeks to advance computational cardiology and move the field closer to a randomized clinical trial that tests whether patients treated with model-optimized therapies have better outcomes than patients who received standard clinical care. The multidisciplinary research team consists of 3 scientists (Ken Campbell, PhD; Jonathan Wenk, PhD; Lik- Chuan Lee, PhD) and 2 cardiologists (Emma Birks, MD/PhD; Gaurang Vaidya, MD). Together, their skillsets range from molecular biophysics, through computer modeling and engineering, to clinical care and Ventricular Assist Devices. The plan has 3 Aims: 1) Develop PyMyoVent as a testbed for implementing baroreflex control and myocardial growth. 2) Use MyoFE to create and validate patient-specific biventricular finite element models that incorporate growth and functional remodeling. 3) Deploy personalized MyoFE models to predict optimal therapies for patients who have heart failure. The plan is highly innovative reward and makes intelligent use of clinical data collected as part of normal care from 100 patients who are enrolled in a research registry at the University of Kentucky. These data will include pressure signals transmitted wirelessly from patients who have had a CardioMEMS device inserted around their pulmonary artery. Fundamental contributions include the creation of finite element models that are controlled by a baroreflex and grow and adapt in response to physiological signals including myofilament stress and cellular energy use.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth S Campbell其他文献

Unfolded Von Willebrand Factor Interacts with Protein S and Limits Its Anticoagulant Activity
  • DOI:
    10.1182/blood-2022-162612
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Martha MS Sim;Hammodah Alfar;Melissa Hollifield;Dominic W. Chung;Xiaoyun Fu;Meenakshi Banerjee;Chi Peng;Xian Li;Alice Thornton;James Z Porterfield;Jamie Sturgill;Gail A Sievert;Marietta Barton-Baxter;Kenneth S Campbell;Jerold G Woodward;José A. López;Sidney W Whiteheart;Beth A Garvy;Jeremy P Wood
  • 通讯作者:
    Jeremy P Wood

Kenneth S Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth S Campbell', 18)}}的其他基金

Carol Act Supplement to Data-driven optimization of therapy for heart failure
卡罗尔法案对数据驱动的心力衰竭治疗优化的补充
  • 批准号:
    10851206
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
Data-driven optimization of therapy for heart failure
数据驱动的心力衰竭治疗优化
  • 批准号:
    10615143
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
Dual filament control of myocardial power and hemodynamics
心肌功率和血流动力学的双丝控制
  • 批准号:
    10245290
  • 财政年份:
    2020
  • 资助金额:
    $ 57.93万
  • 项目类别:
Dual filament control of myocardial power and hemodynamics
心肌功率和血流动力学的双丝控制
  • 批准号:
    10472655
  • 财政年份:
    2020
  • 资助金额:
    $ 57.93万
  • 项目类别:
Length-dependent activation in human myocardium
人类心肌的长度依赖性激活
  • 批准号:
    10468226
  • 财政年份:
    2020
  • 资助金额:
    $ 57.93万
  • 项目类别:
Dual filament control of myocardial power and hemodynamics
心肌功率和血流动力学的双丝控制
  • 批准号:
    10672422
  • 财政年份:
    2020
  • 资助金额:
    $ 57.93万
  • 项目类别:
Length-dependent activation in human myocardium
人类心肌的长度依赖性激活
  • 批准号:
    10678926
  • 财政年份:
    2020
  • 资助金额:
    $ 57.93万
  • 项目类别:
Length-dependent activation in human myocardium
人类心肌的长度依赖性激活
  • 批准号:
    10259881
  • 财政年份:
    2020
  • 资助金额:
    $ 57.93万
  • 项目类别:
Multiscale modeling of inherited cardiomyopathies and therapeutic interventions
遗传性心肌病的多尺度建模和治疗干预
  • 批准号:
    10223922
  • 财政年份:
    2017
  • 资助金额:
    $ 57.93万
  • 项目类别:
Multiscale modeling of inherited cardiomyopathies and therapeutic interventions
遗传性心肌病的多尺度建模和治疗干预
  • 批准号:
    9980457
  • 财政年份:
    2017
  • 资助金额:
    $ 57.93万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 57.93万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了