Supercomputer-based Models of Motoneurons for Estimating Their Synaptic Inputs in Humans

基于超级计算机的运动神经元模型,用于估计人类突触输入

基本信息

  • 批准号:
    10467557
  • 负责人:
  • 金额:
    $ 66.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY All motor commands flow through motoneurons in the spinal cord and brainstem. As for inputs to neural circuits throughout the CNS, these commands comprise three main components: two types of ionotropic input (excitation and inhibition) and a set of G-protein coupled inputs (neuromodulation). Lack of understanding of how these components produce output constitutes a fundamental uncertainty at the foundation of the neural control of movement. Fortunately, motor output in humans can be studied at the level of single neurons. Motoneuron action potentials are 1-to-1 with those of their muscle fibers, forming motor units whose action potentials can be recorded relatively easily in muscles. The potential for using these motor unit firing patterns for understanding motor commands has long been appreciated. Our goal is to maximize this potential by developing supercomputer-based techniques for reverse engineering motor unit firing patterns to identify the amplitudes and patterns of the excitatory, inhibitory and neuromodulatory inputs underlying motor commands in humans. Recent advances that allow simultaneous recording of many motor units have allowed us to identify distinctive nonlinear behaviors in motor unit firing patterns. Our development of realistic models of motoneurons show that these nonlinearities arise from complex interactions between input components. We plan to use these models as the core of a reverse engineering (RE) approach that estimates these three components from nonlinear human motor unit firing patterns. Our premise is that implementation of our models on supercomputers at Argonne National Laboratories will allow systematic exploration of the firing patterns generated by many thousands of input combinations. Those input organizations that accurately recreate a measured set of firing patterns will then be considered to be part of the “solution space” for that particular motor output. The key problem for this analysis is redundancy. If the same motor output can be produced by many input combinations, then reverse engineering will reveal huge solution spaces that provide little insight into motor commands. Overall motor outputs like force and EMG suffer from this problem. Our concept, however, is that measuring motor output at the single neuron level, via motor unit recordings, allows for effective reverse engineering. We have 3 aims: 1) to develop and evaluate supercomputer-based reverse engineering techniques for analysis of motor unit firing patterns. 2) to deploy RE to investigate the mechanisms of muscle-specific differences in populations of motor unit firing patterns. And 3) to deploy RE to investigate whether inhibitory-neuromodulation interactions that are specific for each muscle are relatively fixed, or instead are continuously adapted for different motor tasks. The development of supercomputer-based analysis techniques provides an ideal complement to emergence of techniques to measure firing patterns of large populations of motor units. Our novel reverse engineering method have the potential to transform our understanding of the synaptic organization of motor commands in humans.
所有的运动指令都通过脊髓和脑干中的运动神经元传递。作为

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Heckman其他文献

Charles Heckman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Heckman', 18)}}的其他基金

Supercomputer-based Models of Motoneurons for Estimating Their Synaptic Inputs in Humans
基于超级计算机的运动神经元模型,用于估计人类突触输入
  • 批准号:
    10789100
  • 财政年份:
    2023
  • 资助金额:
    $ 66.9万
  • 项目类别:
Supercomputer-based Models of Motoneurons for Estimating Their Synaptic Inputs in Humans
基于超级计算机的运动神经元模型,用于估计人类突触输入
  • 批准号:
    10612448
  • 财政年份:
    2022
  • 资助金额:
    $ 66.9万
  • 项目类别:
Research Training in Sensorimotor Neurorehabilitation
感觉运动神经康复研究培训
  • 批准号:
    10672172
  • 财政年份:
    2021
  • 资助金额:
    $ 66.9万
  • 项目类别:
Research Training in Sensorimotor Neurorehabilitation
感觉运动神经康复研究培训
  • 批准号:
    10397095
  • 财政年份:
    2021
  • 资助金额:
    $ 66.9万
  • 项目类别:
Research Training in Sensorimotor Neurorehabilitation
感觉运动神经康复研究培训
  • 批准号:
    10836628
  • 财政年份:
    2021
  • 资助金额:
    $ 66.9万
  • 项目类别:
Research Training in Sensorimotor Neurorehabilitation
感觉运动神经康复研究培训
  • 批准号:
    10204569
  • 财政年份:
    2021
  • 资助金额:
    $ 66.9万
  • 项目类别:
Mechanisms of electrical stimulation of a canonical motor microcircuit
典型电机微电路的电刺激机制
  • 批准号:
    10247044
  • 财政年份:
    2018
  • 资助金额:
    $ 66.9万
  • 项目类别:
Mechanisms of electrical stimulation of a canonical motor microcircuit
典型电机微电路的电刺激机制
  • 批准号:
    10468871
  • 财政年份:
    2018
  • 资助金额:
    $ 66.9万
  • 项目类别:
The Human Motor Output Map
人体运动输出图
  • 批准号:
    9301664
  • 财政年份:
    2016
  • 资助金额:
    $ 66.9万
  • 项目类别:
The Human Motor Output Map
人体运动输出图
  • 批准号:
    9188215
  • 财政年份:
    2016
  • 资助金额:
    $ 66.9万
  • 项目类别:

相似海外基金

NSF Postdoctoral Fellowship in Biology: Rewriting the Code: Elucidating how early life adversity alters DNA to affect amygdala-related behavior
NSF 生物学博士后奖学金:重写代码:阐明早年逆境如何改变 DNA 从而影响杏仁核相关行为
  • 批准号:
    2208822
  • 财政年份:
    2023
  • 资助金额:
    $ 66.9万
  • 项目类别:
    Fellowship Award
THE AFFECT OF REGINAOL CHATACTERISTIC ON TRAVEL BEHAVIOR AND HELTH FROM DRIVING CESSATON
雷吉诺尔特征对驾驶塞萨顿旅行行为和健康的影响
  • 批准号:
    20K04741
  • 财政年份:
    2020
  • 资助金额:
    $ 66.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does financial education affect financial behavior?
财商教育会影响财商行为吗?
  • 批准号:
    19K01769
  • 财政年份:
    2019
  • 资助金额:
    $ 66.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How the online shopping and flea market apps affect the consumer behavior and cross border electronic commerce?
网购和跳蚤市场应用程序如何影响消费者行为和跨境电子商务?
  • 批准号:
    18K01798
  • 财政年份:
    2018
  • 资助金额:
    $ 66.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
When free trade agreement meets competition----How does EU-Korea FTA affect Japanese firms' investment behavior
当自贸协定遇上竞争——欧盟-韩国自贸协定如何影响日本企业的投资行为
  • 批准号:
    18K12777
  • 财政年份:
    2018
  • 资助金额:
    $ 66.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Examination of the relationship between the maternal mental health, and the development and behavior of children, and the psychosocial factors that affect them
检查母亲心理健康与儿童的发展和行为之间的关系以及影响他们的心理社会因素
  • 批准号:
    17K16375
  • 财政年份:
    2017
  • 资助金额:
    $ 66.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
  • 批准号:
    9030107
  • 财政年份:
    2015
  • 资助金额:
    $ 66.9万
  • 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
  • 批准号:
    9197675
  • 财政年份:
    2015
  • 资助金额:
    $ 66.9万
  • 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
  • 批准号:
    9139461
  • 财政年份:
    2015
  • 资助金额:
    $ 66.9万
  • 项目类别:
Do short term changes in atmospheric pressure affect the calling behavior of male crickets
大气压力的短期变化会影响雄性蟋蟀的叫声行为吗
  • 批准号:
    467890-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 66.9万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了