Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
基本信息
- 批准号:10468820
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAmplifiersAnimalsAreaBiologicalBiophysicsBrainBrain NeoplasmsBrain PathologyBrain imagingCaliberCardiacCell Culture TechniquesCell DensityCell ShapeCell SizeCellsCharacteristicsComputer ModelsContralateralCustomDataDependenceDevelopmentDiagnosisDiffusionDiseaseElectric ConductivityElectric StimulationElectricityElectrolytesElectroporationElectroporation TherapyEvaluationFrequenciesGlioblastomaGliomaHumanImageIn VitroIschemic StrokeKnowledgeLettersMagnetic ResonanceMagnetic Resonance ImagingMagnetismMalignant NeoplasmsMalignant neoplasm of brainMeasurableMeasurementMeasuresMediatingMembraneMethodsMitoticModelingMonitorPathologicPhaseProceduresProcessPropertyRattusReportingResearchSamplingScanningSensitivity and SpecificityShort Interspersed Nucleotide ElementsSignal TransductionSourceSpectrum AnalysisStainsTechniquesTestingTimeTissuesTreatment EfficacyTumor TissueValidationVariantVascularizationWorkanalogbasecancer cellcancer diagnosiscancer imagingcancer therapycontrast enhanceddensitydesign and constructiondiagnostic tooldigitalelectric impedanceelectrical impedance tomographyelectrical propertyhigh resolution imaginghuman subjectimaging modalityimaging propertiesimprovedin vivoinnovationinterestneoplastic cellneuroregulationnon-invasive imagingnoninvasive diagnosisnovelprogramsprospectivereconstructionresponsesimulationspectrographtissue phantomtooltreatment planningtumorunilamellar vesiclevector
项目摘要
The low-frequency electrical properties of biological tissue provide sensitive and valuable indications of cell
density, membrane properties, electrolyte concentrations and mobilities and the presence or absence of
disease, particularly at frequencies between 1 kHz and 1 MHz. Measurements of variations in these properties
between these frequencies provide a unique view of tissue state. Imaging of electrical properties, combined
with electrical spectroscopy, would allow subtle examination of both spatial and time-dependent tissue
characteristics that are important in the diagnosis and therapy of brain cancers. Unfortunately, relatively few
reports of tissue electrical properties are in this frequency range, because they involve invasive and often
error-prone procedures.
Several Magnetic Resonance Imaging (MRI)-based, non-invasive methods of imaging electrical property
distributions have recently been developed. However, these methods can only be used at high frequencies
(>100 MHz) or very low frequencies (<100 Hz). For example, the technique of Diffusion Tensor Magnetic
Resonance Electrical Impedance Tomography (DT-MREIT) combines MR diffusion tensor and MR phase
images to produce reconstruction of full anisotropic conductivity tensor images at very low frequencies.
However, present DT-MREIT techniques are restricted to measurement frequencies of around 10 Hz.
We now propose transforming MREIT methods to capture spectral effects over the frequency range from 10
Hz to 500 kHz. The new technique, multifrequency MREIT (MF-MREIT) will be validated using computational
models, cell and tissue phantoms and in-vivo using a rat model of brain cancer. The specific focus of the
project will be measuring and characterizing low-frequency electrical properties of cancer cell cultures and
tumors grown from these cells in rat brains. It is anticipated that these measurements will lead to better
understanding of tumor properties and aid in planning new electrical therapies that are increasingly being used
to successfully treat brain tumors. The technique will have further application in diverse areas, including
characterization of tissue responses to tumor treating fields, irreversible electroporation therapy, and
measurement of tissue properties for construction of accurate computational models used in planning
neuromodulation treatments.
生物组织的低频电特性为细胞的功能提供了灵敏而有价值的指示
密度、膜性质、电解质浓度和迁移率以及存在或不存在
疾病,特别是在1 kHz和1 MHz之间的频率。测量这些特性的变化
在这些频率之间提供组织状态的独特视图。电特性成像,组合
与电子光谱学,将允许微妙的检查空间和时间依赖的组织
这些特征在脑癌的诊断和治疗中是重要的。不幸的是,
组织电特性的报告都在这个频率范围内,因为它们涉及侵入性,
容易出错的程序。
几种基于磁共振成像(MRI)的非侵入性电特性成像方法
最近开发了一些发行版。然而,这些方法只能在高频下使用
(>100 MHz)或非常低的频率(<100 Hz)。例如,扩散张量磁
共振电阻抗断层成像(DT-MREIT)结合了MR扩散张量和MR相位
图像以在非常低的频率下产生完全各向异性电导率张量图像的重建。
然而,目前的DT-MREIT技术被限制在10 Hz左右的测量频率。
我们现在建议变换MREIT方法来捕获10到15个频率范围内的光谱效应
Hz至500 kHz。新技术,多频MREIT(MF-MREIT)将使用计算验证
模型、细胞和组织模型和体内使用脑癌大鼠模型。的具体重点
该项目将测量和表征癌细胞培养物的低频电特性,
这些细胞在老鼠大脑中长出的肿瘤。预计这些测量将导致更好的
了解肿瘤的性质,并帮助规划越来越多地使用的新的电疗法
来成功治疗脑瘤该技术将在不同领域得到进一步应用,包括
表征对肿瘤治疗场的组织反应,不可逆电穿孔治疗,以及
测量组织特性以构建用于规划的精确计算模型
神经调节治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROSALIND J SADLEIR其他文献
ROSALIND J SADLEIR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROSALIND J SADLEIR', 18)}}的其他基金
Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
- 批准号:
10309280 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Direct functional imaging of electrical brain stimulation
脑电刺激的直接功能成像
- 批准号:
8505956 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
In vivo imaging of therapeutic electric current flow
治疗电流的体内成像
- 批准号:
8584055 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Direct functional imaging of electrical brain stimulation
脑电刺激的直接功能成像
- 批准号:
9024627 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
In vivo imaging of therapeutic electric current flow
治疗电流的体内成像
- 批准号:
8853958 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Direct functional imaging of electrical brain stimulation
脑电刺激的直接功能成像
- 批准号:
8816151 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Detection and Quantification of Neonatal Intraventricular Hemorrhage
新生儿脑室内出血的检测和定量
- 批准号:
8539858 - 财政年份:2012
- 资助金额:
$ 23.57万 - 项目类别:
Detection and Quantification of Neonatal Intraventricular Hemorrhage
新生儿脑室内出血的检测和定量
- 批准号:
8394459 - 财政年份:2012
- 资助金额:
$ 23.57万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 23.57万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Collaborative R&D














{{item.name}}会员




