Endothelial mechanotransduction and metabolic remodeling
内皮力转导和代谢重塑
基本信息
- 批准号:10468115
- 负责人:
- 金额:$ 39.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAnimalsApoptoticAttentionAttenuatedBioenergeticsBiomechanicsBlood PressureBlood VesselsBlood flowBlood specimenCardiopulmonaryCatabolismChildChronicCongenital Heart DefectsDataDefectDevelopmentDiseaseDisease ProgressionEndothelial CellsEndotheliumEnzymesExposure toFetal SheepGene ExpressionGene Expression ProfileGlutamineGlycolysisGrowthHeart AbnormalitiesHexokinase 2HumanHydrostatic PressureIn VitroIncidenceInterventionLaboratoriesLeadLeftLesionLigationLiquid substanceLive BirthLungMediatingMediator of activation proteinMedicalMetabolicMetabolismMitochondriaModelingMorbidity - disease rateNatural HistoryOperative Surgical ProceduresPathway interactionsPatientsPatternPentosephosphate PathwayPeriodicityPhenotypePlasmaPlayProductionPulmonary artery structureRegulationRoleSeveritiesSeverity of illnessShunt DeviceSignal PathwaySignal TransductionSourceSpecificityStimulusStretchingTestingTherapeutic InterventionValidationbasebiomarker discoverybromopyruvatec-myc Genesclinically relevantcongenital heart disorderdesignendothelial dysfunctionhemodynamicsimprovedin vivoinhibitorlamb modellipid biosynthesismechanical forcemechanotransductionmetabolomicsmortalitynitrationnoveloxidationpostnatalpreservationpressurepulmonary artery endothelial cellpulmonary vascular disorderpulmonary vascular remodelingscreeningshear stresstargeted treatmenttranscriptome sequencingvascular abnormality
项目摘要
PROJECT SUMMARY
Pulmonary vascular disease (PVD) is an important source of morbidity and mortality in patients with congenital
heart disease (CHD). The natural history of PVD in these patients reveals the important pathophysiologic
differences associated with abnormal pulmonary blood flow (PBF) and pressure. Patients with cardiac defects
that expose the pulmonary vasculature to increased flow with a direct pressure stimulus from the systemic
ventricle develop PVD with greater incidence and severity than patients with defects resulting in increased PBF
alone. Pulmonary endothelial cells (EC) are integral mediators of disease, due to their exposure to these normal
and abnormal hemodynamic (mechanical) forces including shear stress, hydrostatic pressure, and cyclic strain.
Our laboratory has developed two distinct, clinically relevant models of CHD in fetal lambs: (1) left pulmonary
artery (LPA) ligation that primarily results in increased PBF to the right lung; and (2) aortopulmonary shunt
placement that results in increased PBF and pressure. Our preliminary data demonstrate that at 4-6 weeks of
age, model lambs manifest distinct aberrations in endothelial cell signaling and vascular function. For example,
RNAseq analysis performed on primary pulmonary artery endothelial cells (PAEC) from each lamb model
demonstrates markedly distinct gene expression patterns, and studies in isolated vessels demonstrate disparate
alterations in vascular reactivity. Moreover, we have generated novel in vivo and in vitro data demonstrating that
the additive effects of the biomechanical forces—fluid shear stress and pressure induced cyclic stretch—cause
perturbations in cellular signaling pathways that result in endothelial dysfunction (eNOS uncoupling), metabolic
reprogramming (ROS driven HIF-1a, and c-MYC activation), and a hyper-proliferative, anti-apoptotic, endothelial
cell phenotype. Based on these data, the overall hypothesis we will test in Project #1, is that the distinct
mechanical forces associated with increased PBF compared to increased PBF and pressure, induce patterned
alterations in gene expression and vascular function that underlie the incidence and progression of PVD
associated with CHD. Specifically, we hypothesize that flow-alone maintains NO signaling through ATP-
dependent hsp90 activity and c-MYC-mediated glutamine anaplerosis. The addition of pressure induced cyclic
stretch, however, leads to HIF-1α driven Warburg metabolism and EC hyper-proliferation via increases in
mitochondrial (mt)-ROS production, but at the expense of ATP-dependent hsp90 activity and NO signaling. This
overall hypothesis will be tested in three inter-related, but independent, Specific Aims. As current PVD treatment
approaches are based on disease severity as opposed to underlying pathobiology, the successful completion of
the proposed studies may lead to targeted therapeutic approaches for PVD 2° to CHD, as well as inform other
types of PVD, in which abnormal mechanical forces participate in disease progression.
项目摘要
肺血管疾病(PVD)是先天患者发病率和死亡率的重要来源
心脏病(CHD)。这些患者的PVD的自然病史揭示了重要的病理生理
与异常的肺血流(PBF)和压力相关的差异。心脏缺陷的患者
从全身性的直接压力刺激中,暴露于肺脉管系统会增加流量
心室发展PVD比出现缺陷的患者更大的事件和严重程度,导致PBF增加
独自的。肺内皮细胞(EC)是疾病的积分介体,因为它们暴露于这些正常
和血液动力学异常(机械)力,包括剪切应力,静水压力和环状应变。
我们的实验室在胎儿羔羊中开发了两种不同的临床相关模型:(1)左肺
主要导致右肺PBF增加的动脉(LPA)结扎; (2)主动脉肺
位置会导致PBF和压力增加。我们的初步数据表明,在4-6周
年龄,模型羔羊在内皮细胞信号传导和血管功能中表现出明显的畸变。例如,
从每个羔羊模型对原代肺动脉内皮细胞(PAEC)进行的RNASEQ分析
证明了明显不同的基因表达模式,在孤立血管中的研究表明不同
血管反应性的改变。此外,我们在体内和体外数据中生成了新颖的数据,证明了这一点
生物力学力的附加作用 - 流体剪切应力和压力引起的环状拉伸 - 是因为
导致内皮功能障碍(ENOS解偶联),代谢的细胞信号传导途径的扰动
重新编程(ROS驱动的HIF-1A和C-MYC激活),以及一种超增殖的,抗凋亡,内皮
细胞表型。基于这些数据,我们将在项目#1中检验的总体假设是不同
与PBF增加和压力相比,与PBF增加相关的机械力,衍生图案
基因表达和血管功能的改变,这是PVD入射和进展的基础
与CHD相关。特别是,我们假设通过ATP -
依赖性的HSP90活性和C-MYC介导的谷氨酰胺孤立性。添加压力感应循环
然而,伸展会导致HIF-1α通过增加而驱动Warburg代谢和EC过度增殖
线粒体(MT) - ROS产生,但以ATP依赖性HSP90活性为代价,没有信号传导。这
总体假设将以三个相关但独立的特定目的进行检验。作为当前的PVD处理
方法基于疾病的严重程度,而不是潜在的病理生物学,成功完成
拟议的研究可能会导致针对PVD 2°的靶向治疗方法,并告知其他
PVD的类型,其中异常的机械力参与疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY R FINEMAN其他文献
JEFFREY R FINEMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY R FINEMAN', 18)}}的其他基金
Endothelial mechanotransduction and metabolic remodeling
内皮力转导和代谢重塑
- 批准号:
10705691 - 财政年份:2020
- 资助金额:
$ 39.94万 - 项目类别:
Development of an oxygen delivery biotherapeutic for the preservation of myocardial function during pediatric cardiopulmonary bypass
开发用于在儿科体外循环期间保存心肌功能的氧气输送生物治疗药物
- 批准号:
10761664 - 财政年份:2017
- 资助金额:
$ 39.94万 - 项目类别:
Development of an oxygen delivery biotherapeutic for the preservation of myocardial function during pediatric cardiopulmonary bypass
开发用于在儿科体外循环期间保存心肌功能的氧气输送生物治疗药物
- 批准号:
9256317 - 财政年份:2017
- 资助金额:
$ 39.94万 - 项目类别:
Research Training in Pediatric Critical Care Medicine
儿科重症监护医学研究培训
- 批准号:
8452072 - 财政年份:2006
- 资助金额:
$ 39.94万 - 项目类别:
Research Training in Pediatric Critical Care Medicine
儿科重症监护医学研究培训
- 批准号:
7232428 - 财政年份:2006
- 资助金额:
$ 39.94万 - 项目类别:
Research Training in Pediatric Critical Care Medicine
儿科重症监护医学研究培训
- 批准号:
8267026 - 财政年份:2006
- 资助金额:
$ 39.94万 - 项目类别:
Research Training in Pediatric Critical Care Medicine
儿科重症监护医学研究培训
- 批准号:
9038390 - 财政年份:2006
- 资助金额:
$ 39.94万 - 项目类别:
Research Training in Pediatric Critical Care Medicine
儿科重症监护医学研究培训
- 批准号:
10593956 - 财政年份:2006
- 资助金额:
$ 39.94万 - 项目类别:
相似国自然基金
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
- 批准号:81901346
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
- 批准号:31902187
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
阿司匹林丁香酚酯抗氧化应激致血管内皮细胞凋亡的分子机制
- 批准号:31872518
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Evaluating the efficacy of Butyric acid pro-drug nanoparticle in retinal neuroprotection
评估丁酸前药纳米颗粒在视网膜神经保护中的功效
- 批准号:
10602346 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Combinatorial Neuroprotective Strategies for Preterm Brain Injury
早产儿脑损伤的组合神经保护策略
- 批准号:
10798705 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别: