From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
基本信息
- 批准号:10469522
- 负责人:
- 金额:$ 113.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureBrainCRISPR screenCellsChromatinData SetDefectDevelopmentDiseaseEngineeringEpigenetic ProcessExhibitsFoundationsFragile X SyndromeFunctional disorderFutureGene ExpressionGeneticGenetic TranscriptionGenomeGenomicsGoalsImaging technologyIn VitroIndividualKnowledgeLengthLightLinkMapsMemoryModificationMolecularMolecular ComputationsNeuraxisNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsNeurosciencesPathologicPatternPhenotypePhysiologicalProteinsRNARoleSomatic CellStructure-Activity RelationshipSynapsesSynaptic plasticityTechnologyWorkcell typeconnectomegenome-widein vivoin vivo Modelinsightlong term memorymemory consolidationmemory encodingnervous system disorderneural circuitpublic health relevancerelating to nervous systemtranscription factor
项目摘要
Title: From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-
term memory
Summary
The Cremins Lab focuses on higher-order genome folding and how classic epigenetic modifications work
through long-range, spatial mechanisms to govern genome function in the developing brain. Much is already
known regarding how transcription factors work in the context of the linear genome to regulate gene
expression. Yet, severe limitations exist in our ability to engineer chromatin in neural circuits to correct synaptic
defects in vivo. At the lab’s inception, it remained unclear whether and how genome folding would functionally
influence cell type-specific gene expression. Thus far, we have developed and applied new molecular and
computational technologies to discover that nested chromatin domains and long-range loops undergo marked
reconfiguration during neural lineage commitment, somatic cell reprogramming, neuronal activity stimulation,
and in repeat expansion disorders. We have demonstrated that loops induced by cortical neuron stimulation,
engineered through synthetic architectural proteins, and miswired in fragile X syndrome were tightly connected
to transcription, thus providing early insight into the genome’s structure-function relationship. We will now focus
on a fundamental mystery in neuroscience: how memory is encoded over decades despite rapid turnover of
synaptic proteins/RNAs. We hypothesize that the 3D genome integrates molecular traces of synaptic plasticity
written on chromatin to store long-term memory in neural circuits. We will employ single-cell genomics and
imaging technologies to dissect the extent to which individual synaptic inputs create 3D epigenetic traces. We
will perform genome-wide CRISPR screens to identify specific loops and epigenetic modifications functionally
important for synaptic plasticity. We will also re-direct technologies used for genome architecture mapping to
create molecular activity-dependent connectome maps, and computationally integrate neuronal connectome
maps across length scales with 3D epigenetic data sets. Successful completion of this work will shed new light
on the genetic and epigenetic mechanisms governing structural and functional synaptic plasticity in
physiologically relevant in vitro and in vivo models of memory encoding and consolidation. Many neurological
disorders exhibit synaptic defects, and alterations in neuronal activity-dependent gene expression underlie
pathological neural phenotypes. Addressing this knowledge gap will provide an essential foundation for our
long-term goals to understand how, when, and why pathologic genome misfolding leads to synaptic
dysfunction, and to engineer the 3D genome to reverse pathologic synaptic defects in debilitating neurological
diseases.
从3D基因组到神经连接组:编码长链DNA的高阶染色质机制
term内存
总结
Cremins实验室专注于高阶基因组折叠以及经典的表观遗传修饰如何工作
通过长距离的空间机制来控制发育中大脑的基因组功能。很多已经
关于转录因子如何在线性基因组的背景下工作以调节基因表达,
表情然而,我们在神经回路中设计染色质以纠正突触的能力存在严重的局限性。
体内缺陷。在该实验室成立之初,人们还不清楚基因组折叠是否以及如何在功能上发挥作用。
影响细胞类型特异性基因表达。到目前为止,我们已经开发和应用了新的分子和
计算技术发现,嵌套的染色质结构域和长程环经历了显着的
神经谱系定型过程中的重构,体细胞重编程,神经元活性刺激,
和重复扩张障碍。我们已经证明了皮层神经元刺激引起的回路,
通过合成结构蛋白质进行工程改造,与脆性X综合征中的错误连接紧密相连,
转录,从而提供早期洞察基因组的结构功能关系。我们现在要集中精力
关于神经科学中的一个基本谜团:尽管大脑中的神经元迅速更替,
突触蛋白/RNA。我们假设3D基因组整合了突触可塑性的分子痕迹
写在染色质上,在神经回路中储存长期记忆。我们将采用单细胞基因组学,
成像技术来剖析单个突触输入创建3D表观遗传痕迹的程度。我们
将进行全基因组CRISPR筛选,以识别功能上的特定环和表观遗传修饰
对突触可塑性很重要我们还将重新指导用于基因组架构映射的技术,
创建分子活性依赖的连接体图谱,并通过计算整合神经元连接体,
利用3D表观遗传学数据集绘制了不同长度尺度的地图。这项工作的成功完成将使人们对
关于控制结构和功能突触可塑性的遗传和表观遗传机制,
生理相关的体外和体内模型的记忆编码和巩固。许多神经
这些疾病表现出突触缺陷,神经元活性依赖性基因表达的改变是神经元功能障碍的基础。
病理性神经表型解决这一知识差距将为我们的
长期目标是了解病理性基因组错误折叠如何,何时以及为什么导致突触
功能障碍,并设计3D基因组来逆转衰弱神经系统中的病理性突触缺陷。
疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Elizabeth Phillips-Cremins其他文献
Jennifer Elizabeth Phillips-Cremins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Elizabeth Phillips-Cremins', 18)}}的其他基金
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
- 批准号:
10674017 - 财政年份:2021
- 资助金额:
$ 113.75万 - 项目类别:
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
- 批准号:
10261918 - 财政年份:2021
- 资助金额:
$ 113.75万 - 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
- 批准号:
10545070 - 财政年份:2020
- 资助金额:
$ 113.75万 - 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
- 批准号:
10322088 - 财政年份:2020
- 资助金额:
$ 113.75万 - 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
- 批准号:
10208688 - 财政年份:2019
- 资助金额:
$ 113.75万 - 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
- 批准号:
10447121 - 财政年份:2019
- 资助金额:
$ 113.75万 - 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
- 批准号:
10634553 - 财政年份:2019
- 资助金额:
$ 113.75万 - 项目类别:
Engineering 3-D Epigenome Topology with Light
利用光设计 3D 表观基因组拓扑
- 批准号:
8955256 - 财政年份:2015
- 资助金额:
$ 113.75万 - 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
- 批准号:
7870494 - 财政年份:2009
- 资助金额:
$ 113.75万 - 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
- 批准号:
8066613 - 财政年份:2009
- 资助金额:
$ 113.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 113.75万 - 项目类别:
Research Grant














{{item.name}}会员




