Engineering 3-D Epigenome Topology with Light

利用光设计 3D 表观基因组拓扑

基本信息

项目摘要

 DESCRIPTION (provided by applicant): The Epigenome is not a static entity, but is dramatically altered in response to environmental and developmental cues throughout the lifetime of an organism. In the case of the developing central nervous system, multipotent neural progenitor cells (NPCs) undergo marked reconfiguration of epigenetic marks as they exit the cell cycle and differentiate into the diverse neural and glial phenotypes that make up the mammalian brain. The dynamic nature of the Epigenome is poorly understood, particularly at short time scales, due to severe limitations in heterogeneity and asynchrony of the large cell populations typically required for genomics assays. Here we propose to overcome these technical challenges by building powerful new optical tools for the precise control of transcription dynamics in the context of the three-dimensional nucleus. Specifically, we aim to build modular, light-inducible architectural proteins for precise spatiotemporal control over the dynamics of 3-D interactions between distal enhancers and promoters of genes essential for neural lineage commitment. A recent study described the striking observation that three basic helix-loop-helix transcription factors are dynamically expressed in an oscillatory manner in proliferating, self-renewing NPCs, whereas only one of these factors transitions to sustained expression upon terminal differentiation. Our own preliminary studies reveal that genes encoding these candidate oscillatory factors are (1) often localized at boundaries between topological sub-domains (sub-TADs) and (2) connected to distal enhancers throughout both adjacent sub-TADs through long-range 3-D interactions. We hypothesize that dynamic 3-D interactions between distal enhancers and promoters of neural-specific bHLH transcription factors might govern the oscillatory expression of these genes. We will test our hypothesis by generating high-resolution maps of higher-order genome folding in NPCs and NPC-derived terminally differentiated neurons and astrocytes around candidate oscillatory factors. We will employ a pipeline of customized computational algorithms to integrate genome folding maps with an annotated catalogue of cell type-specific enhancers to create predictive models for the propensity of an individual enhancer to form 3-D interactions with developmentally regulated neural genes. In parallel, we will build modular, light-activated looping systems with CRISPR/Cas9 gene targeting in combination with proteins that are able to undergo light-inducible dimerization. We will then undertake a series of studies exploring looping dynamics to understand the organizing principles governing neural cell fate commitment. This work is innovative because it studies Epigenome dynamics with a cross- disciplinary approach that combines CRISPR/Cas9 genome editing, principles from optogenetics and genomics tools for mapping 3-D genome topology (i.e. Chromosome-Conformation-Capture and deep sequencing). Discoveries made by this work should yield an unprecedented view into the currently unknown dynamic behavior of genome structure and how it is linked to cell fate transitions in the developing brain.
 描述(由申请人提供):表观基因组不是静态实体,而是在生物体的整个生命周期中根据环境和发育线索而发生显着改变。就发育中的中枢神经系统而言,多能神经祖细胞(NPC)在退出细胞周期并分化成构成哺乳动物大脑的不同神经和神经胶质表型时,会经历表观遗传标记的显着重新配置。由于基因组学分析通常所需的大细胞群的异质性和异步性的严重限制,人们对表观基因组的动态性质知之甚少,特别是在短时间尺度上。在这里,我们建议通过构建强大的新型光学工具来精确控制三维核背景下的转录动力学来克服这些技术挑战。具体来说,我们的目标是构建模块化的光诱导结构蛋白,以精确时空控制神经谱系定型所必需的基因远端增强子和启动子之间的 3D 相互作用的动态。最近的一项研究描述了一个惊人的观察结果,即三种基本的螺旋-环-螺旋转录因子在增殖、自我更新的 NPC 中以振荡方式动态表达,而这些因子中只有一个在终末分化时转变为持续表达。我们自己的初步研究表明,编码这些候选振荡因子的基因 (1) 通常位于拓扑子域 (sub-TAD) 之间的边界处,(2) 通过长程 3-D 相互作用与两个相邻 sub-TAD 中的远端增强子相连。我们假设神经特异性 bHLH 转录因子的远端增强子和启动子之间的动态 3D 相互作用可能控制这些基因的振荡表达。我们将通过生成 NPC 和 NPC 衍生的终末分化神经元和星形胶质细胞围绕候选振荡因子的高阶基因组折叠的高分辨率图来检验我们的假设。我们将采用一系列定制的计算算法将基因组折叠图谱与细胞类型特异性增强子的注释目录相整合,以创建预测模型来预测单个增强子与发育调节神经基因形成 3D 相互作用的倾向。与此同时,我们将构建模块化的光激活循环系统,将 CRISPR/Cas9 基因靶向与能够进行光诱导二聚化的蛋白质相结合。然后,我们将进行一系列研究,探索循环动力学,以了解控制神经细胞命运承诺的组织原则。这项工作具有创新性,因为它采用跨学科方法研究表观基因组动力学,该方法结合了 CRISPR/Cas9 基因组编辑、光遗传学原理和用于绘制 3D 基因组拓扑的基因组学工具(即染色体构象捕获和深度测序)。这项工作的发现将为目前未知的基因组结构动态行为以及它如何与发育中的大脑中的细胞命运转变联系起来提供前所未有的视角。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting hierarchical genome folding with network modularity.
  • DOI:
    10.1038/nmeth.4560
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Norton HK;Emerson DJ;Huang H;Kim J;Titus KR;Gu S;Bassett DS;Phillips-Cremins JE
  • 通讯作者:
    Phillips-Cremins JE
CRISPR/Cas9 genome editing throws descriptive 3-D genome folding studies for a loop.
Dynamic Looping Interactions: Setting the 3D Stage for the Macrophage.
动态循环交互:为巨噬细胞设置 3D 阶段。
  • DOI:
    10.1016/j.molcel.2017.09.011
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    16
  • 作者:
    Rege,Mayuri;Phillips-Cremins,JenniferE
  • 通讯作者:
    Phillips-Cremins,JenniferE
On the existence and functionality of topologically associating domains.
  • DOI:
    10.1038/s41588-019-0561-1
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    30.8
  • 作者:
    Beagan JA;Phillips-Cremins JE
  • 通讯作者:
    Phillips-Cremins JE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Elizabeth Phillips-Cremins其他文献

Jennifer Elizabeth Phillips-Cremins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Elizabeth Phillips-Cremins', 18)}}的其他基金

From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
  • 批准号:
    10469522
  • 财政年份:
    2021
  • 资助金额:
    $ 240万
  • 项目类别:
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
  • 批准号:
    10674017
  • 财政年份:
    2021
  • 资助金额:
    $ 240万
  • 项目类别:
From 3D genomes to neural connectomes: Higher-order chromatin mechanisms encoding long-term memory
从 3D 基因组到神经连接组:编码长期记忆的高阶染色质机制
  • 批准号:
    10261918
  • 财政年份:
    2021
  • 资助金额:
    $ 240万
  • 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
  • 批准号:
    10545070
  • 财政年份:
    2020
  • 资助金额:
    $ 240万
  • 项目类别:
Elucidating the 3-D epigenetic determinants of activity-dependent gene expression in mammalian neurons
阐明哺乳动物神经元活动依赖性基因表达的 3-D 表观遗传决定因素
  • 批准号:
    10322088
  • 财政年份:
    2020
  • 资助金额:
    $ 240万
  • 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
  • 批准号:
    10208688
  • 财政年份:
    2019
  • 资助金额:
    $ 240万
  • 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
  • 批准号:
    10447121
  • 财政年份:
    2019
  • 资助金额:
    $ 240万
  • 项目类别:
Connecting 3D genome misfolding to transcriptional silencing in fragile X syndrome
将 3D 基因组错误折叠与脆性 X 综合征中的转录沉默联系起来
  • 批准号:
    10634553
  • 财政年份:
    2019
  • 资助金额:
    $ 240万
  • 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
  • 批准号:
    7870494
  • 财政年份:
    2009
  • 资助金额:
    $ 240万
  • 项目类别:
Insulator-mediated chromatin organization during neural lineage commitment
神经谱系定型过程中绝缘体介导的染色质组织
  • 批准号:
    8066613
  • 财政年份:
    2009
  • 资助金额:
    $ 240万
  • 项目类别:

相似国自然基金

Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
  • 批准号:
    31760279
  • 批准年份:
    2017
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
  • 批准号:
    24K18245
  • 财政年份:
    2024
  • 资助金额:
    $ 240万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
  • 批准号:
    10670573
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
  • 批准号:
    10807864
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
  • 批准号:
    10562265
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
Accelerating Functional Maturation of Human iPSC-Derived Astrocytes
加速人 iPSC 衍生的星形胶质细胞的功能成熟
  • 批准号:
    10699505
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
  • 批准号:
    10676686
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
  • 批准号:
    10727537
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
  • 批准号:
    10674346
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
  • 批准号:
    10823447
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
Investigating the role of diazepam binding inhibitor (DBI) in astrocytes and neural circuit maturation
研究地西泮结合抑制剂 (DBI) 在星形胶质细胞和神经回路成熟中的作用
  • 批准号:
    10567723
  • 财政年份:
    2023
  • 资助金额:
    $ 240万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了