A Predictive Modeling Framework to Dissect the Dynamic Immunometabolic Responses to Pathogenic infection and the Kinetic Reprogramming of Metabolism in Cancer Cell System
剖析对病原体感染的动态免疫代谢反应和癌细胞系统代谢的动力学重编程的预测模型框架
基本信息
- 批准号:10469496
- 负责人:
- 金额:$ 36.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVBiological ModelsCellsCellular Metabolic ProcessCommunitiesComputer ModelsData SetDatabasesDiseaseDrug TargetingEpigenetic ProcessGene ProteinsGeneticImmuneImmune responseImmune systemImmunological ModelsInfectionKineticsLaboratoriesLeadMalignant NeoplasmsMetabolicMetabolismMethodsModelingMolecularOrganOutcomePathogenicityPlayPrognostic MarkerReactionRegulationResearchRoleSeveritiesSeverity of illnessStaphylococcus aureus infectionSymptomsSystemTestingWorkcancer celldata integrationexperienceimprovedkinetic modelmacrophagemetabolic phenotypemulti-scale modelingneoplastic cellnovel therapeutic interventionpancreatic ductal adenocarcinoma cellpathogenpredictive modelingprogramsresponseskillstherapeutic targettherapeutically effectivetranslational scientist
项目摘要
Cellular metabolism is emerging as a critical factor to control the immune responses and their impact on the
pathogens. In addition, recent studies pinpoint a more prominent role of the aberrant metabolism in controlling
both genetic and epigenetic cellular phenomena of any form of cancer. Thus, investigating the dynamic metabolic
shift in immune cells upon pathogenic infection and temporal ‘reactomics’ (defined as a combination of reaction
mechanisms, regulations, and kinetic parameters) and associated vulnerabilities of tumor cells holds immense
potential to develop novel therapeutic approaches. While the existing multi-scale modeling of immune cells tries
to bridge the gap between multiple scales (i.e., molecular to organ-level), none of the existing approaches can
simultaneously do that by building a proper, predictive ‘full-scale’ model. Furthermore, whether or to what extent
metabolic shifts occur in the host’s immune system is still not known. In case of cancer cell, some of the critical
challenges include defining the systems-level cellular metabolic phenotype and tracking the temporal changes
in reactomics which are critical for reverting the cell metabolism to more healthy state. Herein, PI Saha proposes
to develop and iteratively improve a systems-level, comprehensive, and integrative metabolic modeling
framework: i) to dissect the dynamic shifts in the immunometabolic responses associated with pathogenic
Infection, and ii) investigate the changes in temporal reactomics associated with the metabolic reprogramming
in a specific cancer cell. The proposed research program will leverage the unique combination of computational
modeling skills and rich research experience in Saha’s laboratory that are crucial for characterizing the metabolic
phenomena associated with any disease. His research team recently developed the first computationally
tractable and accurate modeling framework to track the temporal dynamics of cellular metabolism and also
established a new method to estimate the reactomics of each of the metabolic reactions involved in a cellular
system when ‘omics’ datasets are incomplete or missing and, thereby, develop a predictive kinetic modeling
framework. Thus, the proposed modeling framework can potentially investigate the metabolic dynamics
associated with a cluster of cells (e.g., immune cells) interacting with a pathogen or the temporal reactomics of
a specific cell (e.g., cancer cell). As a first step, Saha will investigate the dynamic metabolic shifts in a specific
type of immune cell (i.e., macrophage) upon SARS-Cov-2 and Staphylococcus aureus infection and the temporal
reprogramming and reactomics of pancreatic ductal adenocarcinoma (PDAC) cell metabolism and test the
hypothesis that if the degree to these changes gives rise to the severity of the disease symptoms. Overall, the
proposed framework as well as the associated ‘predictome’ database (containing the predictions of key
genes/proteins/reactions playing critical roles) will provide the broader scientific community including molecular
biologists, computational biologists, clinicians, and translational scientists with a basic understanding of the role
of metabolism in dictating disease severity and also a useful template to investigate other diseases.
细胞代谢正逐渐成为控制免疫反应及其对机体的影响的关键因素
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajib Saha其他文献
Rajib Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajib Saha', 18)}}的其他基金
A Predictive Modeling Framework to Dissect the Dynamic Immunometabolic Responses to Pathogenic infection and the Kinetic Reprogramming of Metabolism in Cancer Cell System
剖析对病原体感染的动态免疫代谢反应和癌细胞系统代谢的动力学重编程的预测模型框架
- 批准号:
10667580 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
A Predictive Modeling Framework to Dissect the Dynamic Immunometabolic Responses to Pathogenic infection and the Kinetic Reprogramming of Metabolism in Cancer Cell System
剖析对病原体感染的动态免疫代谢反应和癌细胞系统代谢的动力学重编程的预测模型框架
- 批准号:
10276617 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 36.43万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 36.43万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 36.43万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 36.43万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 36.43万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 36.43万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 36.43万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 36.43万 - 项目类别:














{{item.name}}会员




