Local neuronal drive and neuromodulatory control of activity in the pial neurovascular circuit
软脑膜神经血管回路活动的局部神经元驱动和神经调节控制
基本信息
- 批准号:10470261
- 负责人:
- 金额:$ 277.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAnalog ComputersAreaBehavioralBloodBlood VesselsBlood capillariesBlood flowBrainBrain regionCaliberCell NucleusCollaborationsComputing MethodologiesCoupledCouplingDataData AnalysesData CollectionDetectionEducationElectroencephalographyElectrophysiology (science)ElementsEsthesiaFrequenciesFunctional Magnetic Resonance ImagingGenerationsHomeostasisHumanImageIndividualJointsKnowledgeLeadLocationLocomotionLogicMagnetic Resonance ImagingMathematicsMeasurementMeasuresMechanicsMediatingMicroscopyModalityModelingMusNatureNeuromodulatorNeuronsNeurosciencesOpticsOutputOxygenPatternPeriodicityPhasePhysiologyProcessPublicationsRecording of previous eventsRegulationResolutionRestSchoolsScienceSignal TransductionSmooth MuscleSpinalStructureTechnologyTestingTheoretical StudiesTrainingVascular blood supplyVasomotoranalytical methodarterioleawakebasecentral pattern generatorconstrictiondata acquisitionexperimental studyfascinatehemodynamicshuman subjectin vivointerestnetwork modelsneuroregulationneurovascularneurovascular couplingoptical imagingoxygen transportrelating to nervous systemspatiotemporaltheoriestwo-dimensionalvasomotion
项目摘要
PROJECT SUMMARY/ABSTRACT – OVERALL
We seek to understand the nature of the pial neurovascular circuit, whose dynamics is characterized by
ultralow frequency oscillations near 0.1 Hz that parcellate into separate coherent regions across cortex. We will
use this knowledge to form a mathematical relation between the hemodynamic patterns observed in optical
and functional magnetic resonance imaging experiments and the underlying brain state.
Our proposed studies propose to leverage our experimental expertise in in vivo optical microscopy in
mouse and fMRI in mouse and human. These primary modalities for data acquisition are combined with
behavioral training, electrophysiology, and data analysis. Our experimental effort is parallel by two theoretical
efforts. One mixed analytical/computational effort is on coupled oscillator dynamics to formulate models, at
varying levels of complexity, of the pial neurovascular circuit. A second solely computational effort concerns
the modulation of the transport of oxygen, by regional oscillations of the pial neurovascular circuit.
The pial neurovascular circuit is composed of a two-dimensional network of pial arterioles that undergo
rhythmic oscillations in the ~ 0.1 Hz vasomotor band. Each element in this circuit - a segment of arteriole
whose diameter is modulated by the constriction/dilation of smooth muscle, contains an intrinsic rhythm
generator, much like intrinsic bursting neurons in central pattern generators. The pial arterioles integrate
neuronal activity from neighboring arterioles, underlying neurons, subcortical neurons, and neuromodulatory
centers to produce dynamic patterns of coherent oscillations in arteriolar diameter across the cortical mantle.
These patterns contain regions that oscillate at slightly different frequencies, i.e., they parcellate into separate
regions. The fascinating issue is that the parcellation only partially reflects input from the directly underlying
neuronal input. We seek to understand, model, and exploit this parcellation.
The PIs have collaborated on issues in neuroscience and neurovascular science for many years. This
proposal is a result of their discoveries and converging interest in a structured collaborative effort. Project 1 will
formulate an understanding of fundamental physiology of the pial neurovascular circuit. This includes
determining if brain arterioles truly act as interacting non-linear oscillators, i.e., that they entrain and phase-lock
rather than passively filter. Projects 1, 2, and 4 will explore experimentally and theoretically how four
competitive interactions, viz, input from neighboring arterioles, (ii) input from underlying neurons, (iii) input from
subcortical areas involved in homeostasis; and (iv) input from brain neuromodulatory centers, lead to the
observed patterns of pial neurovascular activity. Projects 2 and 4 will explore and model the regulation of
oxygen in subsurface vessels, while Project 3 will expand the resolution of MR imaging in humans to observe
single vessels CBV changes and thus measure pial neurovascular dynamics with unparalleled resolution. A
particular interest is to transform spatiotemporal patterns of vasomotion into predictions of internal brain state.
项目概要/摘要——总体
我们试图了解软脑膜神经血管回路的性质,其动力学特征为
接近 0.1 Hz 的超低频振荡,在整个皮层中分割成单独的相干区域。我们将
利用这些知识来形成光学观察到的血流动力学模式之间的数学关系
和功能磁共振成像实验以及潜在的大脑状态。
我们提出的研究建议利用我们在体内光学显微镜方面的实验专业知识
小鼠以及小鼠和人类的功能磁共振成像。这些数据采集的主要方式与
行为训练、电生理学和数据分析。我们的实验工作与两个理论工作并行
努力。一项混合分析/计算工作是研究耦合振荡器动力学来制定模型,
软脑膜神经血管回路的复杂程度不同。第二个单独的计算工作涉及
通过软脑膜神经血管回路的局部振荡来调节氧气的输送。
软脑膜神经血管回路由软脑膜小动脉的二维网络组成,这些小动脉经历
约 0.1 Hz 血管舒缩带的节律振荡。该回路中的每个元件 - 一段小动脉
其直径由平滑肌的收缩/扩张调节,包含内在节律
发生器,很像中枢模式发生器中的内在爆发神经元。软脑膜小动脉整合
来自邻近小动脉、底层神经元、皮层下神经元和神经调节的神经元活动
中心产生穿过皮质地幔的小动脉直径的相干振荡的动态模式。
这些模式包含以稍微不同的频率振荡的区域,即,它们分割成单独的
地区。令人着迷的问题是,分割仅部分反映了直接底层的输入
神经元输入。我们寻求理解、建模和利用这种分割。
PI 多年来一直在神经科学和神经血管科学问题上进行合作。这
提案是他们的发现和对结构化协作努力的共同兴趣的结果。项目1将
了解软脑膜神经血管回路的基本生理学。这包括
确定脑小动脉是否真正充当相互作用的非线性振荡器,即它们夹带和锁相
而不是被动地过滤。项目 1、2 和 4 将通过实验和理论上探索四个
竞争性相互作用,即来自邻近小动脉的输入,(ii)来自底层神经元的输入,(iii)来自
参与体内平衡的皮层下区域; (iv) 来自大脑神经调节中心的输入,导致
观察软脑膜神经血管活动的模式。项目 2 和 4 将探索并模拟监管
地下血管中的氧气,而项目 3 将扩大人类 MR 成像的分辨率以观察
单血管 CBV 变化,从而以无与伦比的分辨率测量软脑膜神经血管动力学。一个
特别感兴趣的是将血管舒缩的时空模式转化为对大脑内部状态的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Devor其他文献
Anna Devor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Devor', 18)}}的其他基金
Local neuronal drive and neuromodulatory control of activity in the pial neurovascular circuit
软脑膜神经血管回路活动的局部神经元驱动和神经调节控制
- 批准号:
10294709 - 财政年份:2021
- 资助金额:
$ 277.48万 - 项目类别:
Local Neuronal Drive and Neuromodulatory Control of Activity in the Pial Neurovascular Circuit
软脑膜神经血管回路活动的局部神经元驱动和神经调节控制
- 批准号:
10649627 - 财政年份:2021
- 资助金额:
$ 277.48万 - 项目类别:
Effects of intrinsic and drug-induced neuromodulation on functional brain imaging
内在和药物诱导的神经调节对功能性脑成像的影响
- 批准号:
10413059 - 财政年份:2020
- 资助金额:
$ 277.48万 - 项目类别:
Effects of intrinsic and drug-induced neuromodulation on functional brain imaging
内在和药物诱导的神经调节对功能性脑成像的影响
- 批准号:
10220930 - 财政年份:2020
- 资助金额:
$ 277.48万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 277.48万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 277.48万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 277.48万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 277.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




