Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
基本信息
- 批准号:10469639
- 负责人:
- 金额:$ 0.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-16 至 2022-06-15
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgingAortic Valve StenosisApoptosisAreaArteriesArtificial HeartAtomic Force MicroscopyAutomobile DrivingBiochemicalBiometryBlood VesselsCardiacCardiac MyocytesCardiovascular PhysiologyCause of DeathCellsCharacteristicsChemicalsChemistryCollagenCollagen FiberConfocal MicroscopyContractsCoronaryCuesDataDepositionDiseaseEndothelial CellsEndotheliumEngineeringEnvironmentExtracellular MatrixExtracellular SpaceFibroblastsFibrosisFreeze DryingGelGene ActivationGenerationsGenetic ModelsGoalsHeartHeart DiseasesHeart failureHypertensionHypertrophyImageIn VitroInjuryLectinLeftLengthLiquid ChromatographyLongitudinal StudiesMAP2K6 geneMapsMeasurementMeasuresMechanicsMediatingMethodsModelingMolecularMusMyocardial InfarctionMyofibroblastNatureOperative Surgical ProceduresOrganPathway interactionsPerfusionPerivascular FibrosisPhenotypePhosphotransferasesPhysiologicalPhysiologyPreparationProcessPropertyProtein KinaseProteomicsPumpRegulationRoleSignal TransductionStimulusStressStretchingStructureSystemTherapeuticThree-Dimensional ImageTimeTissuesTractionTransgenesTransgenic MiceVascular remodelingVentricularWorkblebbistatincell growthcell motilitycell typecombinatorialcoronary fibrosisdensityexperimental studyextracellularheart functionhypertensiveimage reconstructionin vitro Modelin vivoin vivo Modelinterstitialknock-downmathematical modelmechanical propertiesmechanical signalmicroscopic imagingmigrationoverexpressionpreservationpressureresponsescaffoldsecond harmonictandem mass spectrometrytwo-photon
项目摘要
In every form of heart disease, the secretion of extracellular matrix (ECM) by activated
fibroblasts, or myofibroblasts, results in cardiac fibrosis. Fibrosis impedes compliance and
pumping function, ultimately leading to heart failure due to left ventricular dilation and loss of
mechanical function. Little is known about endothelial cell and vessel adaptations to the
environment or how local mechanics and chemistry impact vessel structure and flow in vivo.
Combinatorial fibroblast and ECM mechanical and chemical crosstalk with endothelial cells are
unknown. Moreover, in vitro models aiming to assess vascular adaptations to an extracellular
environment lack physiologically relevant ECMs and instead provide exogenous ECM
components to optimize control of variables. A system for in vivo, cell-specific phenotypic
manipulation will allow for controlled perturbations at an organ level while maintaining relevant,
native ECM remodeling over time. Thus, I propose to examine transgenic mice with cardiac
fibroblast-specific overexpression of a constitutively active mitogen-activated protein kinase
kinase 6 (MKK6) to study vascular remodeling with respect to the fibroblasts and the ECM they
secrete. These mice were previously shown to develop interstitial and perivascular fibrosis after
16-20 weeks of the MKK6 gene activation without an injury stimulus, serving as an effective
model of the interstitial fibrosis preserved across the results of aging, hypertension, aortic
stenosis, and other diseases of the heart. Importantly, the remodeling seen in these diseases
does not involve a massive loss of cardiomyocytes, as in a myocardial infarction, but rather a
conserved fibroblast phenotypic change, an altered extracellular space, and/or restricted
vascular flow over time. Similarly, manipulation of the MKK6 pathway allows for overexpression
or knockdown of cardiac fibroblast activation, corresponding to increased ECM or the inability to
secrete ECM as a response to a stimulus, respectively. First, I propose to study the
biochemical, structural, and mechanical properties of the ECM as well as the macro- and
microvascular responses to activated, quiescent, and control cardiac fibroblast phenotypes in
vivo. Second, three-dimensional vessel-like structures with controlled fibroblasts and ECMs will
be engineered as in vitro platforms to define the molecular regulators of vascular remodeling
induced by microenvironmental cues. The effects of combined signaling will be resolved by
global characterization along with a reductionist method. The goal of this work is to inform heart
therapies by providing targets for steering cardiac vascular remodeling.
在各种形式的心脏病中,激活细胞外基质(ECM)的分泌
成纤维细胞或肌纤维细胞会导致心脏纤维化。纤维化阻碍了合规性和
抽水功能,最终导致左心室扩张和丧失导致心力衰竭
机械功能。关于内皮细胞和容器适应对
环境或局部力学和化学如何影响血管结构和体内流动。
组合成纤维细胞以及ECM机械和化学串扰与内皮细胞是
未知。此外,旨在评估细胞外血管适应的体外模型
环境缺乏生理相关的ECM,而是提供外源性ECM
组件以优化对变量的控制。体内,细胞特异性表型的系统
操纵将允许在维持相关性的同时,在器官级别受控扰动,
随着时间的推移,本地ECM重塑。因此,我建议用心脏检查转基因小鼠
组成型活性有丝分裂原活性蛋白激酶的成纤维细胞特异性过表达
激酶6(MKK6)研究成纤维细胞和ECM的血管重塑
分泌。这些小鼠先前被证明会在
没有损伤刺激的MKK6基因激活16-20周,可作为有效
在衰老,高血压,主动脉的结果中保存的间质纤维化模型
狭窄和心脏的其他疾病。重要的是,在这些疾病中看到的重塑
不像心肌梗塞一样涉及大量心肌细胞的损失,而是
保守的成纤维细胞表型变化,细胞外空间改变和/或受限
随时间流动的血管流动。同样,对MKK6途径的操作允许过表达
或敲低心脏成纤维细胞激活,对应于ECM增加或无法
分别分泌ECM作为对刺激的反应。首先,我建议研究
ECM的生化,结构和机械性能以及宏观和宏观和机械性能
对激活,静止和控制心脏成纤维细胞表型的微血管反应
体内。第二,具有受控成纤维细胞和ECM的三维管子结构将
被设计为体外平台,以定义血管重塑的分子调节剂
由微环境提示诱导。组合信号的影响将通过
全球表征以及简化主义方法。这项工作的目的是告知心脏
通过提供转向心脏血管重塑的靶标的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMILY OLSZEWSKI其他文献
EMILY OLSZEWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMILY OLSZEWSKI', 18)}}的其他基金
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
9909793 - 财政年份:2020
- 资助金额:
$ 0.26万 - 项目类别:
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
10431762 - 财政年份:2020
- 资助金额:
$ 0.26万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别: