Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
基本信息
- 批准号:9909793
- 负责人:
- 金额:$ 4.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-16 至 2023-05-15
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgingAortic Valve StenosisApoptosisAreaArteriesArtificial HeartAtomic Force MicroscopyAutomobile DrivingBiochemicalBiometryBlood VesselsCardiacCardiac MyocytesCardiovascular PhysiologyCause of DeathCellsCharacteristicsChemical StructureChemicalsChemistryCollagenCollagen FiberConfocal MicroscopyContractsCoronaryCuesDataDepositionDiseaseEndothelial CellsEndotheliumEngineeringEnvironmentExtracellular MatrixExtracellular SpaceFibroblastsFibrosisFreeze DryingGelGene ActivationGenerationsGenetic ModelsGoalsHeartHeart DiseasesHeart failureHypertensionHypertrophyImageIn VitroInjuryLectinLeftLengthLiquid ChromatographyLongitudinal StudiesMAP2K6 geneMapsMeasurementMeasuresMechanicsMediatingMethodsModelingMolecularMusMyocardial InfarctionMyofibroblastNatureOperative Surgical ProceduresOrganPathway interactionsPerfusionPerivascular FibrosisPhenotypePhosphotransferasesPhysiologicalPhysiologyPreparationProcessPropertyProtein KinaseProteomicsPumpRegulationRoleSignal TransductionStimulusStressStretchingStructureSystemTherapeuticThree-Dimensional ImageTimeTissuesTractionTransgenesTransgenic MiceVascular remodelingVentricularWorkblebbistatincell growthcell motilitycell typecombinatorialcoronary fibrosisdensityexperimental studyextracellularheart functionimage reconstructionin vitro Modelin vivoin vivo Modelinterstitialknock-downmathematical modelmechanical propertiesmicroscopic imagingmigrationoverexpressionpreservationpressureresponsescaffoldsecond harmonictandem mass spectrometrytwo-photon
项目摘要
In every form of heart disease, the secretion of extracellular matrix (ECM) by activated
fibroblasts, or myofibroblasts, results in cardiac fibrosis. Fibrosis impedes compliance and
pumping function, ultimately leading to heart failure due to left ventricular dilation and loss of
mechanical function. Little is known about endothelial cell and vessel adaptations to the
environment or how local mechanics and chemistry impact vessel structure and flow in vivo.
Combinatorial fibroblast and ECM mechanical and chemical crosstalk with endothelial cells are
unknown. Moreover, in vitro models aiming to assess vascular adaptations to an extracellular
environment lack physiologically relevant ECMs and instead provide exogenous ECM
components to optimize control of variables. A system for in vivo, cell-specific phenotypic
manipulation will allow for controlled perturbations at an organ level while maintaining relevant,
native ECM remodeling over time. Thus, I propose to examine transgenic mice with cardiac
fibroblast-specific overexpression of a constitutively active mitogen-activated protein kinase
kinase 6 (MKK6) to study vascular remodeling with respect to the fibroblasts and the ECM they
secrete. These mice were previously shown to develop interstitial and perivascular fibrosis after
16-20 weeks of the MKK6 gene activation without an injury stimulus, serving as an effective
model of the interstitial fibrosis preserved across the results of aging, hypertension, aortic
stenosis, and other diseases of the heart. Importantly, the remodeling seen in these diseases
does not involve a massive loss of cardiomyocytes, as in a myocardial infarction, but rather a
conserved fibroblast phenotypic change, an altered extracellular space, and/or restricted
vascular flow over time. Similarly, manipulation of the MKK6 pathway allows for overexpression
or knockdown of cardiac fibroblast activation, corresponding to increased ECM or the inability to
secrete ECM as a response to a stimulus, respectively. First, I propose to study the
biochemical, structural, and mechanical properties of the ECM as well as the macro- and
microvascular responses to activated, quiescent, and control cardiac fibroblast phenotypes in
vivo. Second, three-dimensional vessel-like structures with controlled fibroblasts and ECMs will
be engineered as in vitro platforms to define the molecular regulators of vascular remodeling
induced by microenvironmental cues. The effects of combined signaling will be resolved by
global characterization along with a reductionist method. The goal of this work is to inform heart
therapies by providing targets for steering cardiac vascular remodeling.
在每一种形式的心脏病,分泌细胞外基质(ECM)的激活
成纤维细胞或肌成纤维细胞导致心脏纤维化。纤维化妨碍依从性,
泵送功能,最终导致心力衰竭,由于左心室扩张和丧失
机械功能关于内皮细胞和血管适应性的了解很少,
环境或局部力学和化学如何影响体内血管结构和流动。
组合成纤维细胞和ECM与内皮细胞的机械和化学串扰是
未知此外,旨在评估血管对细胞外基质的适应性的体外模型,
环境缺乏生理相关ECM,而是提供外源ECM
优化变量控制的组件。用于体内细胞特异性表型分析的系统,
操纵将允许在器官水平上的受控扰动同时保持相关,
随着时间的推移天然ECM重塑。因此,我建议检查转基因小鼠的心脏
成纤维细胞特异性过表达组成型活性丝裂原活化蛋白激酶
激酶6(MKK6)研究血管重塑与成纤维细胞和ECM,
秘密这些小鼠先前被证明在注射后发生间质和血管周围纤维化。
16 - 20周的MKK6基因激活,没有损伤刺激,作为有效的
间质纤维化模型在衰老、高血压、主动脉
狭窄和其他心脏疾病。重要的是,在这些疾病中看到的重塑
不像心肌梗塞那样涉及心肌细胞的大量损失,而是
保守的成纤维细胞表型变化,细胞外空间改变,和/或限制性的
随着时间的推移血管流量。类似地,操纵MKK6通路允许过表达
或敲低心脏成纤维细胞活化,对应于ECM增加或不能
分泌ECM作为对刺激响应。首先,我建议研究
ECM的生物化学、结构和机械特性以及宏观和微观特性。
微血管对激活、静止和对照心脏成纤维细胞表型的反应
vivo.其次,具有受控成纤维细胞和ECM的三维血管样结构将
作为体外平台设计,以确定血管重塑的分子调节剂
由微环境线索引起的。组合信号的影响将通过以下方式解决:
整体表征沿着简化方法。这项工作的目标是告知心脏
通过提供引导心脏血管重塑的靶点来治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMILY OLSZEWSKI其他文献
EMILY OLSZEWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMILY OLSZEWSKI', 18)}}的其他基金
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
10431762 - 财政年份:2020
- 资助金额:
$ 4.07万 - 项目类别:
Elucidating the role of cardiac myofibroblasts on matrix and vasculature remodeling
阐明心肌成纤维细胞对基质和脉管系统重塑的作用
- 批准号:
10469639 - 财政年份:2020
- 资助金额:
$ 4.07万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 4.07万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 4.07万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 4.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 4.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 4.07万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 4.07万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 4.07万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 4.07万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 4.07万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 4.07万 - 项目类别: