MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
基本信息
- 批准号:10470050
- 负责人:
- 金额:$ 85.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adenosine A1 ReceptorAgonistAgrochemicalsAlgorithmsAndrogen ReceptorAnimal ModelAromataseAwardBayesian MethodBayesian ModelingBehaviorBiotechnologyChemicalsChemistryClientCollectionComputer ModelsComputer softwareConsultDNADataData SetDatabasesDecision TreesEndocrine disruptionEstrogen ReceptorsFee-for-Service PlansFingerprintFoundationsFutureGenerationsGrantGraphIn VitroIndustryLaboratoriesLearningLettersLibrariesLicensingMachine LearningMeasuresMedicalMethodsModelingMolecularMorphologyPaperPathway interactionsPharmacologic SubstancePhaseProgress ReportsPropertyProteinsPublic DomainsPublishingReceiver Operating CharacteristicsSourceStructureSystemTestingToxic effectToxicologyTrainingValidationWorkZebrafishadverse outcomebasecheminformaticsclassification algorithmcomputational toxicologyconsumer productcostdashboarddevelopmental toxicitydiverse datadrug discoverydrug induced liver injuryin vitro Assayin vitro testingin vivoin vivo Modelin vivo evaluationknowledge graphlarge datasetsmachine learning algorithmmachine learning modelmodel developmentmortalitymultitaskneurotoxicitynovelpostersprospectiveprototypepublic databaserandom forestregression algorithmscreeningtoolweb appweb site
项目摘要
Project Summary
Computational toxicology aims to use rules, models and algorithms based on prior data for specific endpoints,
to enable the prediction of whether a new molecule will possess similar liabilities or not. In some cases, the
computational models are derived from discrete molecular endpoints (e.g. estrogen receptor agonism) while in
others they are quite broad in scope (e.g. drug induced liver injury, DILI). Considerable progress has been made
in computational toxicology in a decade both in model development and availability such that the latest
generation of larger scale machine learning (ML) models will further focus in vitro and in vivo testing on
verification of select predictions. Pharmaceutical, consumer products, agrochemical and other chemistry focused
companies possess structure-activity data generated over many decades of screening that is not in the public
domain, and this data is primarily only accessible to the cheminformatics experts in each company. Outside of
these companies small pharmaceutical, biotech companies and academics must rely on data from public
databases, commercial databases and their own data. Integrating such data from diverse sources and
processing with algorithms to build machine learning (ML) models that can help to enable predictions for new
compounds is a vast undertaking. Over Phase I of this project to develop the prototype for MegaToxÒ, we curated
toxicity datasets then generated and tested well over 200 ML models initially focused on the Bayesian approach.
We have also developed approaches to understand training and test set applicability and ultimately performed
prospective predictions against several toxicity targets. Having completed these aims, we also collaborated with
numerous academic laboratories and performed fee-for-service work with five commercial companies. We
currently have several pharmaceutical, agrochemical and consumer product companies evaluating our
computational toxicity models prior to licensing. These discussions with potential customers have influenced this
Phase II proposal to include the following aims: 1. Compare and integrate novel graph-based models such as
graphSAGE versus our suite of 15 different ML regression and classification algorithms for modeling toxicology
datasets such as those generated in Phase I. 2. Integrate read across and adverse outcome pathway methods
with our computational models for DILI and other toxicity models as needed. 3. Generate validated ML models
from in vivo data for non-mammalian species (initially using Zebrafish) which will enable in vitro and in vivo
correlations and can be validated relatively cost effectively. In this proposal over 2 years we expect to develop
models with 15 different algorithms for at least 100 in vitro and in vivo datasets, leading to > 1500 toxicity ML
models. We are not aware of any other company pursuing such an approach to both generate new high value
datasets or models, performing testing of their own models and creating a wide array of toxicity ML models.
MegaToxÒ will be a product available for licensing by pharmaceutical, consumer product, agrochemical and
regulatory groups as well as used in fee-for-service consulting.
项目摘要
计算毒理学的目的是根据特定端点的先前数据使用规则,模型和算法,
为了预测新分子是否可能会产生相似的负债。在某些情况下,
计算模型来自离散的分子终点(例如雌激素受体激动剂),而在
其他人的范围很广(例如药物诱导的肝损伤,DILI)。取得了很大进展
在模型开发和可用性的十年来计算毒理学中
生成更大的机器学习(ML)模型将进一步关注体外和体内测试
验证选定预测。药品,消费产品,农化学和其他化学反应
公司拥有数十年来筛选生成的结构活性数据,而不是在公开场合
域,这些数据主要仅适用于每个公司的化学信息学专家。外面
这些公司小型制药,生物技术公司和学者必须依靠公众的数据
数据库,商业数据库及其自己的数据。整合来自潜水资源的数据,并
使用算法来构建机器学习(ML)模型,可以帮助您对新的预测进行预测
化合物是一项巨大的事业。在该项目的第一阶段以开发Megatoxò的原型,我们策划了
然后,毒性数据集生成并测试了200多个最初集中在贝叶斯方法上的ML模型。
我们还开发了了解培训和测试集适用性并最终执行的方法
针对多个毒性靶标的前瞻性预测。完成了这些目标后,我们还与
许多学术实验室,并与五家商业公司进行了费用的服务。我们
目前有几家制药,农业和消费品公司评估我们的
许可之前的计算毒性模型。与潜在客户的讨论影响了这一点
第二阶段提议包括以下目的:1。比较和整合基于图形的新型模型,例如
图形与我们的15种不同ML回归和分类算法的套件用于建模毒理学
数据集,例如第阶段I中生成的数据集
根据需要使用DILI和其他毒性模型的计算模型。 3。生成经过验证的ML模型
从非哺乳动物物种的体内数据(最初使用斑马鱼),该数据将在体外和体内实现
相关性,可以有效地验证相对成本。在这一建议中,我们期望开发
具有15种不同算法的模型至少100个体外和体内数据集,导致> 1500毒性ML
型号。我们不知道任何其他公司都采用这种方法来产生新的高价值
数据集或模型,对自己的模型进行测试并创建各种毒性ML模型。
Megatoxò将是药品,消费产品,农业化学和
监管组以及用于支付服务咨询的监管组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN EKINS其他文献
SEAN EKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN EKINS', 18)}}的其他基金
Preclinical development of a Nipah Virus inhibitor
尼帕病毒抑制剂的临床前开发
- 批准号:
10761349 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
- 批准号:
10385998 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 85.5万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10094026 - 财政年份:2020
- 资助金额:
$ 85.5万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
- 批准号:
10674729 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
MegaTrans – human transporter machine learning models
MegaTrans — 人类运输机机器学习模型
- 批准号:
9768844 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
MegaPredict for predicting natural product uses and their drug interactions
MegaPredict 用于预测天然产物用途及其药物相互作用
- 批准号:
10055938 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10483470 - 财政年份:2018
- 资助金额:
$ 85.5万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10641950 - 财政年份:2018
- 资助金额:
$ 85.5万 - 项目类别:
Centralized assay datasets for modelling support of small drug discovery organizations
用于小型药物发现组织建模支持的集中化分析数据集
- 批准号:
9751326 - 财政年份:2017
- 资助金额:
$ 85.5万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Adrb2激动剂在改善呼吸机相关性膈肌功能障碍中的作用与机制研究
- 批准号:82372196
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 85.5万 - 项目类别:
Studies on the Treatment of Opioid Use Disorder in Pregnancy
妊娠期阿片类药物使用障碍的治疗研究
- 批准号:
489082 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Operating Grants