MegaTrans – human transporter machine learning models

MegaTrans — 人类运输机机器学习模型

基本信息

  • 批准号:
    9768844
  • 负责人:
  • 金额:
    $ 21.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Summary Being able to predict interactions with important human transporters would be of value to new drug design to avoid compounds that interact with them and cause undesirable side effects. OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) are `uptake' transporters largely restricted to the sinusoidal aspect of hepatocytes. They both transport a wide variety of structurally-unrelated compounds, including members of several clinically im- portant drug families such as statins, sartans and angiotensin converting enzyme (ACE) inhibitors. We now propose to test over 1000 drugs against 2 substrates for each transporter in vitro. We will then use these data to curate and validate machine learning models. We will also use an array of machine learning methods as well as multiple model evaluation metrics. This will enable us to develop a web-based software tool called MegaTrans that will encourage the user to input their own compound structures and generate predictions for interactions with transporter/s of interest and then visualize the similarity to the training set of each model using several different visualization methods. The return on investment of such a tool would be that it could assist in the design and selection of more favorable compounds that avoid transporters of interest while also saving time and money. It could also identify compounds that are already approved that might present a drug interaction risk. Predicting such behavior seen in vivo is ideal and will lead to the prioritization of compounds to test in vitro for potential drug-drug interactions. In Phase II we would greatly expand the number of transporters which we would generate data on and build models such that we could address all the major transporters of interest to drug discovery.
总结 能够预测与重要的人类转运蛋白的相互作用将对新药设计具有价值, 避免与它们相互作用并引起不良副作用的化合物。OATP1B1(SLCO1B1)和 OATP 1B3(SLCO 1B3)是“摄取”转运蛋白,主要限于肝细胞的窦状面。他们 两者都转运多种结构上不相关的化合物,包括几种临床上不相关的化合物的成员, 重要药物家族,如他汀类药物、沙坦类药物和血管紧张素转换酶(ACE)抑制剂。我们现在 建议在体外针对每种转运蛋白的2种底物测试1000多种药物。然后,我们将使用这些数据, 策划和验证机器学习模型。我们还将使用一系列机器学习方法, 多模型评估指标。这将使我们能够开发一种名为MegaTrans的基于网络的软件工具 这将鼓励用户输入他们自己的复合结构并生成交互预测 与感兴趣的运输商,然后使用几个可视化的相似性,每个模型的训练集 不同的可视化方法。这种工具的投资回报是它可以帮助设计 以及选择避免感兴趣的转运蛋白同时还节省时间和金钱的更有利的化合物。 它还可以识别已经批准的可能存在药物相互作用风险的化合物。预测 在体内观察到的这种行为是理想的, 药物相互作用在第二阶段,我们将大大增加运输机的数量, 数据和建立模型,这样我们就可以解决所有主要的药物发现感兴趣的转运。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SEAN EKINS其他文献

SEAN EKINS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SEAN EKINS', 18)}}的其他基金

Preclinical development of a Nipah Virus inhibitor
尼帕病毒抑制剂的临床前开发
  • 批准号:
    10761349
  • 财政年份:
    2023
  • 资助金额:
    $ 21.07万
  • 项目类别:
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
  • 批准号:
    10385998
  • 财政年份:
    2022
  • 资助金额:
    $ 21.07万
  • 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
  • 批准号:
    10378934
  • 财政年份:
    2021
  • 资助金额:
    $ 21.07万
  • 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
  • 批准号:
    10094026
  • 财政年份:
    2020
  • 资助金额:
    $ 21.07万
  • 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
  • 批准号:
    10470050
  • 财政年份:
    2019
  • 资助金额:
    $ 21.07万
  • 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
  • 批准号:
    10674729
  • 财政年份:
    2019
  • 资助金额:
    $ 21.07万
  • 项目类别:
MegaPredict for predicting natural product uses and their drug interactions
MegaPredict 用于预测天然产物用途及其药物相互作用
  • 批准号:
    10055938
  • 财政年份:
    2019
  • 资助金额:
    $ 21.07万
  • 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
  • 批准号:
    10483470
  • 财政年份:
    2018
  • 资助金额:
    $ 21.07万
  • 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
  • 批准号:
    10641950
  • 财政年份:
    2018
  • 资助金额:
    $ 21.07万
  • 项目类别:
Centralized assay datasets for modelling support of small drug discovery organizations
用于小型药物发现组织建模支持的集中化分析数据集
  • 批准号:
    9751326
  • 财政年份:
    2017
  • 资助金额:
    $ 21.07万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了