MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
基本信息
- 批准号:10094026
- 负责人:
- 金额:$ 12.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-05 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholinesteraseAcheAddressAdenosineAdenosine A1 ReceptorAgonistAlgorithmsAnticonvulsantsChlorineClinical TrialsCommunitiesComputer ModelsDataData SetDatabasesDecision TreesDevelopmentFDA approvedFundingGoalsGrantIn VitroLicensingLogistic RegressionsLung InflammationMachine LearningModelingPesticidesPharmaceutical PreparationsPhasePhysiologicalPrivatizationPubChemSmall Business Innovation Research GrantSourceSpeedSystemTechnologyTestingToxic effectToxicologyTransforming Growth Factor alphaTransforming Growth Factor betabaseclinical candidatecomputational toxicologycost effectivenessdeep neural networkdrug discoveryin vitro Assayin vitro testingin vivomedical countermeasurenerve agentnovelpesticide poisoningpreclinical studypredictive modelingpulmonary agentsrandom forestscreeningsupport vector machinevirtual
项目摘要
Project Summary
Computational toxicology aims to use rules, models and algorithms based on prior data for specific endpoints,
to enable the prediction of whether a new molecule will possess similar liabilities or not. Our recent efforts have
used sources like PubChem and ChEMBL to build predictive models for different toxicity-related and drug
discovery endpoints. Our Phase I SBIR proposal called MegaTox will provide toxicity machine learning models
developed with different algorithms for 40-50 in vitro and in vivo toxicity datasets. We propose using this
technology to generate machine learning models for predicting potential compounds against either TGF- a
target for countering chlorine induced lung inflammation as well as the adenosine A1 receptor to identify agonists
as potential anticonvulsants. In addition, we can also compile molecules that can reactivate acetylcholinesterase
which would enable the potential to discover medical countermeasures to address nerve agent and pesticide
poisoning. We will access multiple machine learning approaches and validate these Bayesian or other machine
learning models (including Linear Logistic Regression, AdaBoost Decision Tree, Random Forest, Support Vector
Machine and deep neural networks (DNN) of varying depth) with our own in-house technology for these selected
targets. We will aim for ROC values greater than 0.75 and MCC and F1 scores that are acceptable (>0.3). These
models will be used to virtually screen FDA approved drugs, clinical candidates, commercially available drugs
or other molecules. We will select up to 50 molecules to be tested using in vitro assays alongside controls for
each target. These combined efforts should in the first instance provide commercially viable treatments which
will be used to experimentally validate our computational models that can be shared with the medical
countermeasures scientific community. In summary, we are proposing to build and validate models for targets
based on public databases, select compounds for testing, create proprietary data and use this as a starting point
for further optimization of compounds if needed. Our goal is to identify at least one promising compound for each
target that we then pursue and protect our IP. We will pursue additional grant funding to take these medical
countermeasures through additional in vitro and in vivo preclinical studies. Ultimately, we will license our products
to larger companies for development prior to clinical trials.
项目总结
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defending Antiviral Cationic Amphiphilic Drugs That May Cause Drug-Induced Phospholipidosis.
- DOI:10.1021/acs.jcim.1c00903
- 发表时间:2021-09-27
- 期刊:
- 影响因子:5.6
- 作者:Lane TR;Ekins S
- 通讯作者:Ekins S
Comparing Machine Learning Models for Aromatase (P450 19A1).
- DOI:10.1021/acs.est.0c05771
- 发表时间:2020-12-01
- 期刊:
- 影响因子:11.4
- 作者:Zorn KM;Foil DH;Lane TR;Hillwalker W;Feifarek DJ;Jones F;Klaren WD;Brinkman AM;Ekins S
- 通讯作者:Ekins S
Erratum: CATMoS: Collaborative Acute Toxicity Modeling Suite.
- DOI:10.1289/ehp9883
- 发表时间:2021-07
- 期刊:
- 影响因子:10.4
- 作者:Mansouri K;Karmaus A;Fitzpatrick J;Patlewicz G;Pradeep P;Alberga D;Alepee N;Allen TEH;Allen D;Alves VM;Andrade CH;Auernhammer TR;Ballabio D;Bell S;Benfenati E;Bhattacharya S;Bastos JV;Boyd S;Brown JB;Capuzzi SJ;Chushak Y;Ciallella H;Clark AM;Consonni V;Daga PR;Ekins S;Farag S;Fedorov M;Fourches D;Gadaleta D;Gao F;Gearhart JM;Goh G;Goodman JM;Grisoni F;Grulke CM;Hartung T;Hirn M;Karpov P;Korotcov A;Lavado GJ;Lawless M;Li X;Luechtefeld T;Lunghini F;Mangiatordi GF;Marcou G;Marsh D;Martin T;Mauri A;Muratov EN;Myatt GJ;Nguyen DT;Nicolotti O;Note R;Pande P;Parks AK;Peryea T;Polash A;Rallo R;Roncaglioni A;Rowlands C;Ruiz P;Russo D;Sayed A;Sayre R;Sheils T;Siegel C;Silva AC;Simeonov A;Sosnin S;Southall N;Strickland J;Tang Y;Teppen B;Tetko IV;Thomas D;Tkachenko V;Todeschini R;Toma C;Tripodi I;Trisciuzzi D;Tropsha A;Varnek A;Vukovic K;Wang Z;Wang L;Waters KM;Wedlake AJ;Wijeyesakere SJ;Wilson D;Xiao Z;Yang H;Zahoranszky-Kohalmi G;Zakharov AV;Zhang FF;Zhang Z;Zhao T;Zhu H;Zorn KM;Casey W;Kleinstreuer NC
- 通讯作者:Kleinstreuer NC
The Antiviral Drug Tilorone Is a Potent and Selective Inhibitor of Acetylcholinesterase.
- DOI:10.1021/acs.chemrestox.0c00466
- 发表时间:2021-05-17
- 期刊:
- 影响因子:4.1
- 作者:Vignaux PA;Minerali E;Lane TR;Foil DH;Madrid PB;Puhl AC;Ekins S
- 通讯作者:Ekins S
AI in drug discovery: A wake-up call.
药物发现中的人工智能:敲响警钟。
- DOI:10.1016/j.drudis.2022.103410
- 发表时间:2023
- 期刊:
- 影响因子:7.4
- 作者:Urbina,Fabio;Lentzos,Filippa;Invernizzi,Cédric;Ekins,Sean
- 通讯作者:Ekins,Sean
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN EKINS其他文献
SEAN EKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN EKINS', 18)}}的其他基金
Preclinical development of a Nipah Virus inhibitor
尼帕病毒抑制剂的临床前开发
- 批准号:
10761349 - 财政年份:2023
- 资助金额:
$ 12.49万 - 项目类别:
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
- 批准号:
10385998 - 财政年份:2022
- 资助金额:
$ 12.49万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 12.49万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 12.49万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
- 批准号:
10674729 - 财政年份:2019
- 资助金额:
$ 12.49万 - 项目类别:
MegaTrans – human transporter machine learning models
MegaTrans — 人类运输机机器学习模型
- 批准号:
9768844 - 财政年份:2019
- 资助金额:
$ 12.49万 - 项目类别:
MegaPredict for predicting natural product uses and their drug interactions
MegaPredict 用于预测天然产物用途及其药物相互作用
- 批准号:
10055938 - 财政年份:2019
- 资助金额:
$ 12.49万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10483470 - 财政年份:2018
- 资助金额:
$ 12.49万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10641950 - 财政年份:2018
- 资助金额:
$ 12.49万 - 项目类别:
Centralized assay datasets for modelling support of small drug discovery organizations
用于小型药物发现组织建模支持的集中化分析数据集
- 批准号:
9751326 - 财政年份:2017
- 资助金额:
$ 12.49万 - 项目类别:
相似国自然基金
转录因子BMAL1调控AChE在昼夜节律紊乱致认知损害中的作用及分子机制
- 批准号:2024Y9230
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于无机基质固定碳点光学探针研究有机磷农药暴露AChE响应的活体测量
- 批准号:
- 批准年份:2024
- 资助金额:50 万元
- 项目类别:面上项目
基于AChE/NLRP3 靶点研究垂穗石松中抗AD新型黄酮苷
吐星酸酯类成分的发现及作用机制研究
- 批准号:2024JJ8138
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于GSK-3β/AChE双重抑制的抗AD杂交分子的设计、合成及作用机制研究
- 批准号:22367005
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于可逆界面传质调控机制的AChE固定化荧光传感器及有机磷农药高灵敏抗干扰速测
- 批准号:32372427
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
利用微流体技术合成富缺陷MOFs材料定向捕获AChE酶构筑高性能传感界面
- 批准号:32302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗基质干扰导向的AChE仿生荧光探针的设计合成及农药残留速测应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于高分辨活性轮廓分析的中药AChE/GSK3β双靶点抑制剂高内涵筛选研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型AChE/NLRP3双靶点抑制剂—藤石松中抗AD新颖黄酮苷吐星酸酯类成分的发现及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于AchE靶点的苗药三两银抗阿尔兹海默症甾体生物碱类化合物发现与作用机制研究
- 批准号:82260833
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
AchE阻害活性アルカロイドの骨格生合成酵素の機能解析と改変
具有AchE抑制活性的生物碱骨架生物合成酶的功能分析及修饰
- 批准号:
23K24040 - 财政年份:2024
- 资助金额:
$ 12.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research to create homoisoflavonoid analogues with both AChE inhibitory and neurite outgrowth promoting activities.
研究创建具有乙酰胆碱酯酶抑制和神经突生长促进活性的高异黄酮类似物。
- 批准号:
22K05458 - 财政年份:2022
- 资助金额:
$ 12.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AchE阻害活性アルカロイドの骨格生合成酵素の機能解析と改変
具有AchE抑制活性的生物碱骨架生物合成酶的功能分析及修饰
- 批准号:
22H02777 - 财政年份:2022
- 资助金额:
$ 12.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring reversible AChE inhibitors as a treatment for refractory epilepsies
探索可逆的 AChE 抑制剂治疗难治性癫痫
- 批准号:
9764633 - 财政年份:2019
- 资助金额:
$ 12.49万 - 项目类别:
Towards continuous real-time acetylcholine esterase (AChE) monitoring using wearable sensors
使用可穿戴传感器进行连续实时乙酰胆碱酯酶 (AChE) 监测
- 批准号:
2520106 - 财政年份:2018
- 资助金额:
$ 12.49万 - 项目类别:
Studentship
GCAMP6 mice for determination of mechanisms of chronic muscle ache, pain and fatigue
GCAMP6 小鼠用于确定慢性肌肉疼痛、疼痛和疲劳的机制
- 批准号:
9090636 - 财政年份:2016
- 资助金额:
$ 12.49万 - 项目类别:
GCAMP6 mice for determination of mechanisms of chronic muscle ache, pain and fatigue
GCAMP6 小鼠用于确定慢性肌肉疼痛、疼痛和疲劳的机制
- 批准号:
9260952 - 财政年份:2016
- 资助金额:
$ 12.49万 - 项目类别:
Developing Cholinesterase (AChE) inhibitor screening methods using Nuclear Magnetic Resonance Spectroscopy (NMR)
使用核磁共振波谱 (NMR) 开发胆碱酯酶 (AChE) 抑制剂筛选方法
- 批准号:
1667863 - 财政年份:2015
- 资助金额:
$ 12.49万 - 项目类别:
Studentship
Accelerated AChE Reactivator Design by Mechanistic Neutron Scattering Studies
通过机械中子散射研究加速乙酰胆碱酯酶再激活器设计
- 批准号:
8735548 - 财政年份:2014
- 资助金额:
$ 12.49万 - 项目类别:
Accelerated AChE Reactivator Design by Mechanistic Neutron Scattering Studies
通过机械中子散射研究加速乙酰胆碱酯酶再激活器设计
- 批准号:
8892277 - 财政年份:2014
- 资助金额:
$ 12.49万 - 项目类别: