MRI Signatures of Neuromelanin and Iron Pathology in Parkinsonism
帕金森病神经黑色素和铁病理学的 MRI 特征
基本信息
- 批准号:10474357
- 负责人:
- 金额:$ 19.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAutopsyAwardBiological MarkersBrainClinicClinicalClinical ResearchClinical TrialsClinical Trials DesignClinical assessmentsCustomDataData ScienceDeep Brain StimulationDentate nucleusDepositionDevelopmentDiagnosisDifferential DiagnosisDiseaseEnvironmentFreezingFutureGaitGlobus PallidusGoalsImageImage AnalysisIndividualIronLateralLeadMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMedialMentorsMeta-AnalysisMethodsModalityMonitorMovement Disorder Society Unified Parkinson&aposs Disease Rating ScaleMovement DisordersMultiple System AtrophyNerve DegenerationNeurodegenerative DisordersNeurologyOperative Surgical ProceduresOutcomeOutputParkinson DiseaseParkinsonian DisordersPathologyPatientsPatternPredispositionProcessProductivityProgressive Supranuclear PalsyPublic HealthQuestionnairesRed nucleus structureReproducibilityResearchResearch PersonnelStructureStructure of subthalamic nucleusSubjects SelectionsSubstantia nigra structureSystemTherapeuticTrainingTreatment outcomeUniversitiesVisitWorkanalysis pipelineautomated analysisbasecandidate markercareerclassification algorithmclinical diagnosisclinical diagnosticscostdesigndiagnostic accuracydiagnostic tooldisorder controleffective therapyfollow-upimage processingimaging modalityimaging systemimprovedimproved outcomein vivoinnovationinterestlocus ceruleus structuremachine learning classificationmachine learning classifiermagnetic resonance imaging biomarkerneuroimaging markerneuromelaninneuron lossnigrostriatal systemnovelpars compactapatient screeningputamenrecruitrelating to nervous systemskillssuccesstool
项目摘要
Parkinson’s disease (PD), multiple system atrophy parkinsonian type (MSA-P), and progressive supranuclear
palsy (PSP) are costly and devastating neurodegenerative diseases. They have overlapping clinical
manifestations and diagnosis remains challenging in many cases. Thus far no effective treatments have been
developed to meaningfully slow or stop their progression. This is due in part to a lack of tools to objectively
measure degeneration in the neural systems affected by each of these diseases. Availability of such tools would
assist clinical diagnosis, facilitate selection of appropriate patient groups for trial recruitment, and enable
objective measurement of treatment outcomes. Recent MRI studies suggest that disease-specific brain changes
can, indeed, be identified in these parkinsonian diseases. The objective of this research is to identify univariable
markers and multivariable MRI signatures that capture distinct patterns of neurodegenerative change across
neural systems to accurately distinguish these diseases.
To accomplish this the investigators use 3 Tesla MRI contrasts sensitive to key features of
neurodegeneration to 1) identify structures damaged by PD, MSA-P and PSP and 2) to quantify the extent of
damage in each neural system in parkinsonian diseases. Specifically, the investigators use neuromelanin-
sensitive MRI to measure neuromelanin loss and quantitative susceptibility mapping (QSM) and R2* imaging to
measure iron accumulation in patients with PD, MSA-P, and PSP. Using these contrasts and an innovative region
of interest (ROI) selection approach, they reproducibly measure patterns of neurodegenerative change across
neural systems. In Aim 1 the investigators use neuromelanin-sensitive MRI to study neuromelanin loss in PD,
MSA-P and PSP in to identify univariable disease features that are differentially affected by parkinsonian
diseases and may assist distinguishing these conditions. In Aim 2 they use QSM and R2* MRI to study ROIs
differentially impacted by PD, MSA-P and PSP to identify iron accumulation biomarkers to help distinguish these
diseases. In Aim 3 the investigators apply machine learning classification algorithms to identify multivariable MRI
signatures of neurodegenerative change across neural systems to differentiate PD, MSA-P and PSP. Study
outputs will be candidate MRI biomarkers and disease signatures. The long term goal of this research is to further
develop these outputs for use as clinical diagnostic tools and as biomarkers for subject selection and outcome
measurement in clinical trials.
Through this career award Dr. Huddleston will gain new skills in MRI methods, data science, and neural
systems imaging in parkinsonian diseases. These new skills will enable Dr. Huddleston to design and lead
interdisciplinary neuroimaging biomarker studies for Parkinson’s disease and related disorders. His mentor team
is comprised of leaders in their fields. This team and the dynamic research environment at Emory University
provide the necessary support for Dr. Huddleston to successfully transition to scientific independence.
帕金森氏病(PD),多系统萎缩帕金森氏症类型(MSA-P)和进行性超级
麻痹(PSP)是昂贵且破坏性的神经退行性疾病。他们有重叠的临床
在许多情况下,表现和诊断仍然是挑战。那没有有效的治疗
开发有意义地放慢或停止其进展。这部分是由于缺乏客观性的工具
测量受每种疾病影响的神经系统的变性。此类工具的可用性将
协助临床诊断,促进选择合适的患者群体进行试用招募,并启用
治疗结果的客观测量。最近的MRI研究表明疾病特异性的大脑变化
确实可以在这些帕金森氏病中确定。这项研究的目的是确定单变量
标记和多变量MRI签名,可捕获整个神经退行性变化的不同模式
神经系统准确区分这些疾病。
为了实现这一目标,调查人员使用3个特斯拉MRI对比敏感
神经变性为1)确定受PD,MSA-P和PSP损坏的结构以及2)量化的程度
帕金森病疾病中每个神经元系统的损害。具体而言,研究人员使用神经丙氨酸 -
敏感的MRI测量神经元素损失和定量敏感性映射(QSM)和R2*成像
测量PD,MSA-P和PSP患者的铁积累。使用这些对比和创新区域
感兴趣的选择方法,它们可重复地测量整个神经退行性变化的模式
神经系统。在AIM 1中,研究人员使用神经素敏感的MRI研究PD中的神经苯胺损失,
MSA-P和PSP识别受帕金森氏症不同影响的单变量疾病特征
疾病,可能有助于区分这些情况。在AIM 2中,他们使用QSM和R2* MRI研究ROI
受PD,MSA-P和PSP的差异影响,以识别铁积累生物标志物,以帮助区分这些生物标志物
疾病。在AIM 3中,调查人员应用机器学习分类算法来识别多变量MRI
神经元系统之间神经退行性变化的特征,以区分PD,MSA-P和PSP。学习
产出将是候选MRI生物标志物和疾病特征。这项研究的长期目标是进一步
开发这些输出作为临床诊断工具,并用作主题选择和结果的生物标志物
临床试验中的测量。
通过这个职业奖,哈德勒斯顿博士将获得MRI方法,数据科学和中立的新技能
帕金森病中的系统成像。这些新技能将使Huddleston博士能够设计和领导
跨学科的神经影像学研究帕金森氏病和相关疾病。他的心理团队
由他们领域的领导者组成。这个团队和埃默里大学的动态研究环境
为Huddleston博士提供必要的支持,以成功地过渡到科学独立性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Cloud-based Framework for Implementing Portable Machine Learning Pipelines for Neural Data Analysis.
用于实施用于神经数据分析的便携式机器学习管道的基于云的框架。
- DOI:10.1109/embc.2019.8856929
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ellis,CharlesA;Gu,Ping;Sendi,MohammadSE;Huddleston,Daniel;Sharma,Ashish;Mahmoudi,Babak
- 通讯作者:Mahmoudi,Babak
Nigral diffusivity, but not free water, correlates with iron content in Parkinson's disease.
- DOI:10.1093/braincomms/fcab251
- 发表时间:2021
- 期刊:
- 影响因子:4.8
- 作者:Langley J;Huddleston DE;Hu X
- 通讯作者:Hu X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Huddleston其他文献
Daniel Huddleston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Huddleston', 18)}}的其他基金
MRI Signatures of Neuromelanin and Iron Pathology in Parkinsonism
帕金森病神经黑色素和铁病理学的 MRI 特征
- 批准号:
9666652 - 财政年份:2018
- 资助金额:
$ 19.26万 - 项目类别:
相似海外基金
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别:
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别:
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别:
Commercialization Readiness Pilot (CRP) program support for: Direct-from-specimen identification of pathogens common in endocarditis
商业化准备试点 (CRP) 计划支持: 直接从样本鉴定心内膜炎常见病原体
- 批准号:
10758417 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 19.26万 - 项目类别: