Project 2 - Investigation of human neuron models of channelopathy-associated epilepsy
项目 2 - 通道病相关癫痫的人类神经元模型的研究
基本信息
- 批准号:10477453
- 负责人:
- 金额:$ 36.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AftercareAgonistAntiepileptic AgentsBiological ModelsBiological SciencesBiophysicsCRISPR/Cas technologyCell LineCellsClinicalCollaborationsCollectionCoupledDefectDevelopmentDiseaseDrug ScreeningEffectivenessElectrophysiology (science)EpilepsyEvaluationFunctional disorderGene Expression ProfilingGenerationsGenesGeneticGlutamatesGoalsHumanIn VitroInduced pluripotent stem cell derived neuronsInterneuronsInvestigationIon ChannelLeadershipLinkMeasuresMethodsModelingMolecularMutationNeonatalNeurologicNeurological ModelsNeuronal DifferentiationNeuronsOpticsOutcomePathogenicityPatient RecruitmentsPatient SelectionPatientsPersonsPharmaceutical PreparationsPharmacologyPharmacology StudyPharmacotherapyPhysiologyPositioning AttributePropertyRefractoryRegimenResearchSeizuresSeveritiesSyndromeTechnologyVariantWorkchannel blockersclinical efficacyearly onsetepileptic encephalopathiesexcitatory neuronexperimental studygenetic variantgenome editingimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell technologyinhibitory neuroninnovationmouse modelnervous system disorderneurophysiologyoptimal treatmentsoptogeneticspatch clamppreventresponsesingle-cell RNA sequencingstem cell based approachsuccesstargeted treatmenttoolvoltagevoltage clamp
项目摘要
In Project 2 we will determine the functional consequences of epilepsy-associated ion channel gene variants
using human neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs). We will initially
focus on the SCN2A and KCNQ2 genes, which encode the voltage-gated Na+ (NaV1.2) and K+ (KV7.2)
channels respectively. Mutations in SCN2A and KCNQ2 are responsible for monogenic early onset epileptic
encephalopathy (EE) with overlapping clinical features and diverse severity. Collectively, variants in these two
genes account for ~10% of all mutations identified in genetic epilepsy. The molecular pathogenic mechanisms
responsible for the clinical manifestations of KCNQ2- and SCN2A-related epilepsies remain largely unknown.
More importantly, no targeted therapeutic approach capable of diminishing seizure burden and improving
developmental outcomes exists for these devastating neurological disorders. In Aim 1, we will use patient-
specific cortical neurons to elucidate the functional consequences of epilepsy-associated KCNQ2 and SCN2A
variants. We will specifically examine cortical excitatory and inhibitory neurons derived from existing patient-
specific iPSC lines with pathogenic variants and corresponding isogenic control lines. We will use a
combination of transcriptional profiling (single-cell RNA-sequencing) with electrophysiological approaches
(whole cell patch clamp recording and high-throughput optogenetic recordings) to determine the impact of
mutations on neuronal function and excitability. In Aim 2, we will assess the intrinsic excitability of patient
neurons before and after treatment with NaV channel blockers and KV7 agonists that have clinical efficacy in
the patients from whom the cells were derived. Our goal will be to rank the in vitro effectiveness of drugs in
restoring normal neuron excitability for each genetic variant, and then to correlate the in vitro drug responses
with the clinical responses to AEDs documented for these patients. This project entails a strategic collaboration
between Dr. Kiskinis, whose lab focuses on using stem cell-based approaches to establish models of
neurological disease, and Q-State Biosciences, Inc., which under the scientific leadership of Dr. McManus has
been developing optogenetic technologies to enable high-throughput electrical recordings of human neurons
and drug screening platforms for epilepsy syndromes. This project will work closely with the other Center
teams, including Core A (Variant Prioritization and Curation Core), Project 1 (High-Throughput Functional
Evaluation of Ion Channel Variants) and Project 3 (Development and Investigation of Murine Models of
Channelopathy-associated Epilepsy). Core A is building tools to prioritize variants for experimental evaluation
by the three Center projects. Correlation of findings from Project 2 with those of Projects 1 and 3 will help
determine the reliability and accuracy of iPSC technology to predict in vivo physiology and pharmacology. Our
findings will impact the field by demonstrating mechanistic effects of channelopathy-associated epilepsy
variants, and by providing a systematic evaluation of human neuron platforms for precise drug selection.
在项目 2 中,我们将确定癫痫相关离子通道基因变异的功能后果
使用从患者特异性诱导多能干细胞(iPSC)分化而来的人类神经元。我们将首先
重点关注 SCN2A 和 KCNQ2 基因,它们编码电压门控 Na+ (NaV1.2) 和 K+ (KV7.2)
分别频道。 SCN2A 和 KCNQ2 突变导致单基因早发性癫痫
脑病(EE)具有重叠的临床特征和不同的严重程度。总的来说,这两个变体
基因约占遗传性癫痫中发现的所有突变的 10%。分子致病机制
导致 KCNQ2 和 SCN2A 相关癫痫临床表现的机制仍然很大程度上未知。
更重要的是,没有针对性的治疗方法能够减轻癫痫发作负担并改善癫痫发作
这些毁灭性的神经系统疾病存在发育结果。在目标 1 中,我们将使用病人-
特定皮质神经元阐明癫痫相关 KCNQ2 和 SCN2A 的功能后果
变种。我们将专门检查来自现有患者的皮质兴奋性和抑制性神经元
具有致病性变异的特定 iPSC 系和相应的等基因对照系。我们将使用一个
转录分析(单细胞 RNA 测序)与电生理学方法的结合
(全细胞膜片钳记录和高通量光遗传学记录)以确定
神经元功能和兴奋性的突变。在目标 2 中,我们将评估患者的内在兴奋性
使用具有临床疗效的 NaV 通道阻滞剂和 KV7 激动剂治疗前后的神经元
细胞来源的患者。我们的目标是对药物的体外有效性进行排名
恢复每个遗传变异的正常神经元兴奋性,然后关联体外药物反应
记录了这些患者对 AED 的临床反应。该项目需要战略合作
Kiskinis 博士的实验室专注于使用基于干细胞的方法来建立模型
神经系统疾病和 Q-State Biosciences, Inc. 在 McManus 博士的科学领导下,
一直在开发光遗传学技术以实现人类神经元的高通量电记录
以及癫痫综合征药物筛选平台。该项目将与其他中心密切合作
团队,包括核心 A(变体优先级划分和管理核心)、项目 1(高通量功能
离子通道变异体的评估)和项目 3(小鼠模型的开发和研究)
通道病相关性癫痫)。核心 A 正在构建工具来确定实验评估变体的优先级
由三个中心项目组成。项目 2 的研究结果与项目 1 和 3 的研究结果的关联将有助于
确定 iPSC 技术预测体内生理学和药理学的可靠性和准确性。我们的
研究结果将通过证明通道病相关癫痫的机制效应来影响该领域
变体,并通过对人类神经元平台进行系统评估以进行精确的药物选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evangelos Kiskinis其他文献
Evangelos Kiskinis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evangelos Kiskinis', 18)}}的其他基金
Defining the Mechanisms by Which Mutations in DNAJC7 Increase Susceptibility to ALS/FTD
确定 DNAJC7 突变增加 ALS/FTD 易感性的机制
- 批准号:
10645510 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Investigating the Contribution of ALS/FTD-Associated Mutations in the NEK1 Kinase to Disease Pathophysiology
研究 NEK1 激酶中 ALS/FTD 相关突变对疾病病理生理学的贡献
- 批准号:
10753020 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Defining The Impaired Proteostasis Network in ALS Patient Motor Neurons
定义 ALS 患者运动神经元受损的蛋白质稳态网络
- 批准号:
9676717 - 财政年份:2018
- 资助金额:
$ 36.2万 - 项目类别:
Project 2 - Investigation of human neuron models of channelopathy-associated epilepsy
项目 2 - 通道病相关癫痫的人类神经元模型的研究
- 批准号:
10247557 - 财政年份:2018
- 资助金额:
$ 36.2万 - 项目类别:
Determining How Defective Nucleo-Cytoplasmic Trafficking Leads To Neurodegeneration In C9orf72-Related ALS And FTD
确定缺陷性核细胞质运输如何导致 C9orf72 相关 ALS 和 FTD 中的神经变性
- 批准号:
10112967 - 财政年份:2018
- 资助金额:
$ 36.2万 - 项目类别:
Defining The Impaired Proteostasis Network in ALS Patient Motor Neurons
定义 ALS 患者运动神经元受损的蛋白质稳态网络
- 批准号:
9756483 - 财政年份:2018
- 资助金额:
$ 36.2万 - 项目类别:
Determining How Defective Nucleo-Cytoplasmic Trafficking Leads To Neurodegeneration In C9orf72-Related ALS And FTD
确定缺陷性核细胞质运输如何导致 C9orf72 相关 ALS 和 FTD 中的神经变性
- 批准号:
10334500 - 财政年份:2018
- 资助金额:
$ 36.2万 - 项目类别:
Project 2 - Investigation of human neuron models of channelopathy-associated epilepsy
项目 2 - 通道病相关癫痫的人类神经元模型的研究
- 批准号:
9792297 - 财政年份:
- 资助金额:
$ 36.2万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 36.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 36.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




