Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
基本信息
- 批准号:10477260
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2022-09-02
- 项目状态:已结题
- 来源:
- 关键词:AreaAssimilationsBedsBehaviorBrazilBurn injuryCenters for Disease Control and Prevention (U.S.)CitiesClimateCommunicable DiseasesCommunitiesComplementCountryDataData SetData SourcesDengueDeveloping CountriesDevelopmentDiseaseDisease OutbreaksElementsEnvironmentEnvironmental Risk FactorEpidemicEpidemiologyGeographyGoalsGrantHealthHeterogeneityHigh Performance ComputingHumanImageryIndividualInfluenzaInfluenza B VirusInstitutionInternetKnowledgeKnowledge DiscoveryLeadLinkLiteratureMachine LearningMethodologyMethodsModelingMonitorMunicipalitiesPopulation SurveillanceProcessPublic HealthReadinessResearchSocioeconomic StatusTechniquesTestingTimeTwitterVaccinationVector-transmitted infectious diseaseWaterWeatherWorkZIKAbasechikungunyaclimate variabilitycomputational platformcomputer infrastructuredata infrastructuredata modelingdata streamsdata-driven modeldigitaldisease transmissioneconomic determinanteconomic disparityexperienceflugenomic dataheterogenous dataimprovedinnovationmachine learning predictionmathematical methodsmeteorological datamultiple data sourcesnovelopen dataopen sourcepathogenpathogen genomicspredictive modelingsocialsocial mediasociodemographicssocioeconomicsspreading factortherapy designtime usetooltransmission processtrendvector controlvector-borne
项目摘要
PROJECT SUMMARY
Reliable and real-time municipality-level predictive modeling and forecasts of infectious disease activity have
the potential to transform the way public health decision-makers design interventions such as information
campaigns, preemptive/reactive vaccinations, and vector control, in the presence of health threats across the
world. While the links between disease activity and factors such as: human mobility, climate and
environmental factors, socio-economic determinants, and social media activity have long been known in the
epidemic literature, few efforts have focused on the evident need of developing an open-source platform
capable of leveraging multiple data sources, factors, and disparate modeling methodologies, across a large
and heterogeneous nation to monitor and forecast disease transmission, over four geographic scales (nation,
state, city, and municipal). The overall goal of this project is to develop such a platform.
Our long-term goal is to investigate effective ways to incorporate the findings from multiple disparate studies
on disease dynamics around the globe with local and global factors such as weather conditions, socio-
economic status, satellite imagery and online human behavior, to develop an operational, robust, and real-
time data-driven disease forecasting platform.
The objective of this grant is to leverage the expertise of three complementary scientific research teams
and a wealth of information from a diverse array of data sources to build a modeling platform capable of
combining information to produce real-time short term disease forecasts at the local level. As part of this, we
will evaluate the predictive power of disparate data streams and modeling approaches to monitor and forecast
disease at multiple geographic scales--nation, state, city, and municipality--using Brazil as a test case.
Additionally, we will use machine learning and mechanistic models to understand disease dynamics at
multiple spatial scales, across a heterogeneous country such as Brazil.
Our specific aims will (1) Assess the utility of individual data streams and modeling techniques for disease
forecasting; (2) Fuse modeling techniques and data streams to improve accuracy and robustness at the four
spatial scales; (3) Characterize the basic computational infrastructure necessary to build an operational
disease forecasting platform; and (4) Validate our approach in a real-world setting.
This contribution is significant because It will advance our scientific knowledge on the accuracy and
limitations of disparate data streams and multiple modeling approaches when used to forecast disease
transmission. Our efforts will help produce operational and systematic disease forecasts at a local level (city-
and municipality-level). Moreover, we aim at building a new open-source computational platform for the
epidemiological community to use as a knowledge discovery tool. Finally, we aim at developing this platform
under the guidance of a Subject Matter Expert (SME) panel comprising of WHO, CDC, academics, and local
and federal stakeholders within Brazil.
The proposed approach is innovative because few efforts have focused on developing an open-source
computational platform capable of combining disparate data sources and drivers, across a heterogeneous
and large nation, into multiple modeling approaches to monitor and forecast disease transmission, over
multiple geographic scales.. In addition, we propose to investigate how to best combine modeling approaches
that have, to this date, been developed and interpreted independently, namely, traditional epidemiological
mechanistic models and novel machine-learning predictive models, in order to produce accurate and robust
real-time disease activity estimates and forecasts.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mauricio Santillana其他文献
Mauricio Santillana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mauricio Santillana', 18)}}的其他基金
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
- 批准号:
10000112 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
- 批准号:
10244988 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
- 批准号:
9789907 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
- 批准号:
10766051 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
Assimilations- und Kontrasteffekte in der sozialen Urteilsbildung: Das Inklusions-Exklusionsmodell als allgemeines Urteilsmodell zur Vorhersage der Richtung und der Größe von Kontexteffekten
社会判断形成中的同化和对比效应:包含-排除模型作为预测情境效应方向和大小的一般判断模型
- 批准号:
136888925 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
assimilations of Chinese informations and formation of views on northern region in Japan at early modern times
近代初期中国信息的吸收与日本北部地区观念的形成
- 批准号:
20320098 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
ECCS-IHCS: Adaptive Network Assimilations Through System Reconfigurability
ECCS-IHCS:通过系统可重构性进行自适应网络同化
- 批准号:
0725914 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Determination of the Adjoint Model of the NMC Global and NGMModels and Their Application to 4-D Data Assimilations
NMC Global和NGM模型伴随模型的确定及其在4维数据同化中的应用
- 批准号:
8806553 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




