Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity

开发开源和数据驱动的建模平台来监测和预测疾病活动

基本信息

  • 批准号:
    10766051
  • 负责人:
  • 金额:
    $ 40.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-21 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Reliable and real-time municipality-level predictive modeling and forecasts of infectious disease activity have the potential to transform the way public health decision-makers design interventions such as information campaigns, preemptive/reactive vaccinations, and vector control, in the presence of health threats across the world. While the links between disease activity and factors such as: human mobility, climate and environmental factors, socio-economic determinants, and social media activity have long been known in the epidemic literature, few efforts have focused on the evident need of developing an open-source platform capable of leveraging multiple data sources, factors, and disparate modeling methodologies, across a large and heterogeneous nation to monitor and forecast disease transmission, over four geographic scales (nation, state, city, and municipal). The overall goal of this project is to develop such a platform. Our long-term goal is to investigate effective ways to incorporate the findings from multiple disparate studies on disease dynamics around the globe with local and global factors such as weather conditions, socio- economic status, satellite imagery and online human behavior, to develop an operational, robust, and real- time data-driven disease forecasting platform. The objective of this grant is to leverage the expertise of three complementary scientific research teams and a wealth of information from a diverse array of data sources to build a modeling platform capable of combining information to produce real-time short term disease forecasts at the local level. As part of this, we will evaluate the predictive power of disparate data streams and modeling approaches to monitor and forecast disease at multiple geographic scales--nation, state, city, and municipality--using Brazil as a test case. Additionally, we will use machine learning and mechanistic models to understand disease dynamics at multiple spatial scales, across a heterogeneous country such as Brazil. Our specific aims will (1) Assess the utility of individual data streams and modeling techniques for disease forecasting; (2) Fuse modeling techniques and data streams to improve accuracy and robustness at the four spatial scales; (3) Characterize the basic computational infrastructure necessary to build an operational disease forecasting platform; and (4) Validate our approach in a real-world setting. This contribution is significant because It will advance our scientific knowledge on the accuracy and limitations of disparate data streams and multiple modeling approaches when used to forecast disease transmission. Our efforts will help produce operational and systematic disease forecasts at a local level (city- and municipality-level). Moreover, we aim at building a new open-source computational platform for the epidemiological community to use as a knowledge discovery tool. Finally, we aim at developing this platform under the guidance of a Subject Matter Expert (SME) panel comprising of WHO, CDC, academics, and local and federal stakeholders within Brazil. The proposed approach is innovative because few efforts have focused on developing an open-source computational platform capable of combining disparate data sources and drivers, across a heterogeneous and large nation, into multiple modeling approaches to monitor and forecast disease transmission, over multiple geographic scales.. In addition, we propose to investigate how to best combine modeling approaches that have, to this date, been developed and interpreted independently, namely, traditional epidemiological mechanistic models and novel machine-learning predictive models, in order to produce accurate and robust real-time disease activity estimates and forecasts.
项目总结

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Impacts to COVID-19 Herd Immunity Thresholds Under Demographic Heterogeneity that Lowers Vaccine Effectiveness.
探索人口异质性降低疫苗有效性对 COVID-19 群体免疫阈值的影响。
Assessing K-12 school reopenings under different COVID-19 Spread scenarios - United States, school year 2020/21: A retrospective modeling study.
  • DOI:
    10.1016/j.epidem.2022.100632
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Germann, Timothy C.;Smith, Manhong Z.;Dauelsberg, Lori R.;Fairchild, Geoffrey;Turton, Terece L.;Gorris, Morgan E.;Ross, Chrysm Watson;Ahrens, James P.;Hemphill, Daniel D.;Manore, Carrie A.;Del Valle, Sara Y.
  • 通讯作者:
    Del Valle, Sara Y.
Gastroenteritis Forecasting Assessing the Use of Web and Electronic Health Record Data With a Linear and a Nonlinear Approach: Comparison Study.
  • DOI:
    10.2196/34982
  • 发表时间:
    2023-01-31
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Poirier, Canelle;Bouzille, Guillaume;Bertaud, Valerie;Cuggia, Marc;Santillana, Mauricio;Lavenu, Audrey
  • 通讯作者:
    Lavenu, Audrey
How New Mexico Leveraged a COVID-19 Case Forecasting Model to Preemptively Address the Health Care Needs of the State: Quantitative Analysis.
  • DOI:
    10.2196/27888
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Castro LA;Shelley CD;Osthus D;Michaud I;Mitchell J;Manore CA;Del Valle SY
  • 通讯作者:
    Del Valle SY
An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time.
  • DOI:
    10.1126/sciadv.abd6989
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Kogan NE;Clemente L;Liautaud P;Kaashoek J;Link NB;Nguyen AT;Lu FS;Huybers P;Resch B;Havas C;Petutschnig A;Davis J;Chinazzi M;Mustafa B;Hanage WP;Vespignani A;Santillana M
  • 通讯作者:
    Santillana M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mauricio Santillana其他文献

Mauricio Santillana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mauricio Santillana', 18)}}的其他基金

Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
  • 批准号:
    10000112
  • 财政年份:
    2018
  • 资助金额:
    $ 40.6万
  • 项目类别:
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
  • 批准号:
    10244988
  • 财政年份:
    2018
  • 资助金额:
    $ 40.6万
  • 项目类别:
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
  • 批准号:
    10477260
  • 财政年份:
    2018
  • 资助金额:
    $ 40.6万
  • 项目类别:
Development of an Open-Source and Data-Driven Modeling Platform to Monitor and Forecast Disease Activity
开发开源和数据驱动的建模平台来监测和预测疾病活动
  • 批准号:
    9789907
  • 财政年份:
    2018
  • 资助金额:
    $ 40.6万
  • 项目类别:

相似国自然基金

精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于升阶谱方法和Open CASCADE的高阶网格自动生成技术研究
  • 批准号:
    11972004
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
变分与拓扑方法和Schrodinger方程中的Open 问题
  • 批准号:
    10871109
  • 批准年份:
    2008
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
  • 批准号:
    10839199
  • 财政年份:
    2023
  • 资助金额:
    $ 40.6万
  • 项目类别:
Assessing the importance of open-source software development from a cyber-security perspective
从网络安全角度评估开源软件开发的重要性
  • 批准号:
    2888123
  • 财政年份:
    2023
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Studentship
5G Open RAN IAB radio stack Development via open source solutions
5G Open RAN IAB 无线电堆栈 通过开源解决方案进行开发
  • 批准号:
    10031196
  • 财政年份:
    2022
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Small Business Research Initiative
Development of an open-source reference data set, image repository and interactive training tool for bone damage assessment in inflammatory arthritis
开发用于炎症性关节炎骨损伤评估的开源参考数据集、图像存储库和交互式培训工具
  • 批准号:
    460681
  • 财政年份:
    2022
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Miscellaneous Programs
Pathways Enabling Open-Sources Ecosystems (POSE) Training Program – Supporting Collaborative Open Source Ecosystem Development
实现开源生态系统 (POSE) 培训计划的途径 — 支持协作开源生态系统开发
  • 批准号:
    2234076
  • 财政年份:
    2022
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Cooperative Agreement
Open source software development
开源软件开发
  • 批准号:
    574507-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of an open source platform for synthetic genomics
开发合成基因组学开源平台
  • 批准号:
    RGPIN-2020-06151
  • 财政年份:
    2022
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Discovery Grants Program - Individual
POSE Phase I: Observational health data sciences and informatics (OHDSI) open source ecosystem (OSE) development
POSE 第一阶段:观察健康数据科学和信息学 (OHDSI) 开源生态系统 (OSE) 开发
  • 批准号:
    2229587
  • 财政年份:
    2022
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Development of Open-Source, High Performance Miniature Multiphoton Microscopy Systems for Freely Behaving Animals
为自由行为的动物开发开源、高性能微型多光子显微镜系统
  • 批准号:
    10490819
  • 财政年份:
    2021
  • 资助金额:
    $ 40.6万
  • 项目类别:
Participation and Practices in Open Artificial Intelligence: A study of the Sociotechnical Networks of Open-Source Software Sharing and Development
开放人工智能的参与与实践:开源软件共享与开发的社会技术网络研究
  • 批准号:
    2594358
  • 财政年份:
    2021
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了