Panoptic electrochemical probe for next-generation mass spectrometry based-lipidomics
用于基于脂质组学的下一代质谱分析的全景电化学探针
基本信息
- 批准号:10478940
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalCardiac developmentCardiovascular DiseasesCell physiologyCharacteristicsChemicalsComplexDevelopmentDiabetes MellitusDiabetic mouseDiagnosisDiagnosticDiseaseGeometryHeartHomeostasisIonsIsomerismLengthLipidsMalignant NeoplasmsMass Spectrum AnalysisMethodsMolecularNeurodegenerative DisordersOrganismOutcomePathogenesisPathologyPhysiologicalPlayPositioning AttributePrediabetes syndromeReactionResearchRoleRunningSamplingSpecificityStructureStructure-Activity RelationshipSystemTechnologyVisionbasedisease diagnosisinstrumentationlipid metabolismlipid structurelipidomelipidomicsmethod developmentnew technologynext generationnovelpi bondprogramsresponsetoolvoltagewestern diet
项目摘要
PROJECT SUMMARY/ABSTRACT
Lipids play a vital role in maintaining cellular function. Altered lipid metabolism is currently considered a hallmark
characteristic of many diseases such as malignancies, neurodegenerative diseases, cardiovascular diseases,
and diabetes. This has led to a demand for new technologies with comprehensive capabilities for revealing lipid
structure and composition. Such technology is essential for the study of lipid structure-function relationships and
the development of methods to diagnose and treat pathologies. Recent efforts in mass spectrometry (MS)-based
lipidomics, including ion activation methods and chemical derivatization, have expanded the toolbox for lipid
analysis. However, there is no single method at present that is capable of resolving all types of lipid structures
since lipids are structurally diverse and often contain mixtures of isomers. The lack of efficient and reliable
analytical approaches for discerning lipid isomers in biological samples directly leads to the fact that the
physiological roles and functions of lipid isomers remain largely unknown. The central vision of my research
program is to address the deficiencies in lipid structural analysis technology using the unique microdroplet
electrochemical (ME) methods, which take advantage of voltage-controlled electrochemical derivatization of lipid
isomers and the dramatically accelerated rates of electrochemical transformations at microdroplet interfaces to
achieve structural elucidation. The proposed voltage-triggered ME reactions will be performed in a modified
electrospray emitter taking the form of a probe and using standard commercial MS instrumentation. Derivatized
products will generate diagnostic ions specific to particular lipid isomers in tandem mass spectra, allowing
characterization of detailed structures. During the next five years, my research group aims to develop ME probes
for lipid analysis with particular emphasis on isomer identification and quantification so as to realize the promise
of ME as a practical research tool for understanding, diagnosing, and treating diseases. A toolbox of ME
reactions will be developed to characterize various lipid isomers including lipid class, acyl chain length, double-
bond positions, geometries, and sn(stereospecific numbering)-positions, the key information needed for accurate
lipid structure annotation. The ME reactions are diverse and can be triggered by voltage changes, so they will
be cascaded into a single system (a panoptic ME probe) to identify lipid structures at all levels of isomer
specificity in a single experimental run. The ME probe will be used for studying the lipidome of pre-diabetic
mouse heart to reveal the initial lipidomic signature in the heart in response to a Western diet and to define the
deleterious effects of lipid isomers on the development of cardiac pathology. The expected outcome of this
project is to provide a widely applicable approach with enhanced capabilities in lipid structural analysis, which
will uncover structure-function relationships in lipid homeostasis and pathology invisible to current lipid profiling.
项目总结/摘要
脂质在维持细胞功能方面起着至关重要的作用。脂质代谢改变目前被认为是一个标志
许多疾病如恶性肿瘤,神经变性疾病,心血管疾病,
和糖尿病这导致了对具有揭示脂质的综合能力的新技术的需求
结构和组成。这种技术对于脂质结构-功能关系的研究至关重要,
发展诊断和治疗疾病的方法。基于质谱(MS)的最近的努力
脂质组学,包括离子活化法和化学衍生法,
分析.然而,目前没有一种方法能够分辨所有类型的脂质结构
因为脂质在结构上是多样的并且通常含有异构体的混合物。缺乏高效可靠的
用于辨别生物样品中脂质异构体的分析方法直接导致以下事实:
脂质异构体的生理作用和功能在很大程度上仍然未知。我研究的中心观点
该计划是为了解决脂质结构分析技术的缺陷,使用独特的微滴
电化学(ME)方法,其利用脂质的电压控制电化学衍生化
异构体和微滴界面处电化学转化的显著加速速率,
实现结构解析。建议的电压触发ME反应将在修改后的
电喷雾发射器采用探针的形式并使用标准商业MS仪器。衍生化
产品将在串联质谱中产生特定脂质异构体的诊断离子,
详细结构的表征。在接下来的五年里,我的研究小组的目标是开发ME探头
用于脂质分析,特别强调异构体的鉴定和定量,以实现
ME作为理解,诊断和治疗疾病的实用研究工具。我的工具箱
将开发反应来表征各种脂质异构体,包括脂质类别、酰基链长度、双-
键位置、几何形状和sn(立体定向编号)位置,这些都是精确计算所需的关键信息。
脂质结构注释。ME反应是多种多样的,并且可以由电压变化触发,因此它们将
级联到单个系统(全景ME探针)中,以识别所有水平的异构体的脂质结构
在一个单一的实验运行的特异性。ME探针将用于研究糖尿病前期患者的脂质组
小鼠心脏,以揭示心脏中响应于西方饮食的初始脂质组学特征,
脂质异构体对心脏病理学发展的有害作用。预期的结果是,
项目是提供一种广泛适用的方法,具有增强的脂质结构分析能力,
将揭示脂质稳态和病理学中的结构-功能关系,这些关系是目前脂质分析所看不到的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Yan其他文献
Xin Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Yan', 18)}}的其他基金
Panoptic electrochemical probe for next-generation mass spectrometry based-lipidomics
用于基于脂质组学的下一代质谱分析的全景电化学探针
- 批准号:
10276837 - 财政年份:2021
- 资助金额:
$ 37.88万 - 项目类别:
Panoptic electrochemical probe for next-generation mass spectrometry based-lipidomics
用于基于脂质组学的下一代质谱分析的全景电化学探针
- 批准号:
10799315 - 财政年份:2021
- 资助金额:
$ 37.88万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant














{{item.name}}会员




