Computational Methods for Enhancing Privacy in Biomedical Data Sharing

增强生物医学数据共享隐私的计算方法

基本信息

  • 批准号:
    10478239
  • 负责人:
  • 金额:
    $ 39.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-10 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Data sharing is essential to modern biomedical data science. Access to a large amount of genomic and clinical data can help us better understand human genetics and its impact on health and disease. However, the sensitive nature of biomedical information presents a key bottleneck in data sharing and collection efforts, limiting the utility of these data for science. The goal of this project is to leverage cutting-edge advances in cryptography and information theory to develop innovative computational frameworks for privacy-preserving sharing and analysis of biomedical data. We will draw upon our recent success in developing secure pipelines for collaborative biomedical analyses to address the imminent need to share sensitive data securely and at scale. Practical adoption of existing privacy-preserving techniques in biomedicine has thus far been largely limited due to two major pitfalls, which this project overcomes with novel technical advances. First, emerging cryptographic data sharing frameworks, which promise to enable collaborative analysis pipelines that securely combine data across multiple institutions with theoretical privacy guarantees, are too costly to support complex and large-scale computations required in biomedical analyses. In this project, we will build upon recent advances in cryptography (e.g., secure distributed computation, pseudorandom correlation, zero-knowledge proofs) to significantly enhance the scalability and security of cryptographic biomedical data sharing pipelines. Second, existing approaches that locally transform data to protect sensitive information before sharing (e.g. de-identification techniques) either offer insufficient levels of protection or require excessive perturbation in order to ensure privacy. We will draw upon recent tools from information theory to develop effective local privacy protection methods that achieve superior utility-privacy tradeoffs on a range of biomedical data including genomes, transcriptomes, and medical images by directly exploiting the latent correlation structure of the data. To promote the use of our privacy techniques, we will create production-grade software of our tools and publicly release them. We will also actively participate in international standard-setting organizations in genomics, e.g. GA4GH and ICDA, to incorporate our insights into community guidelines for biomedical privacy. Successful completion of these aims will result in computational methods and software tools that open the door to secure sharing and analysis of massive sets of sensitive genomic and clinical data. Our long-term goal is to broadly enable data sharing and collaboration efforts in biomedicine, thus empowering researchers to better understand the molecular basis of human health and to drive translation of new biological insights to the clinic.
项目摘要 数据共享是现代生物医学数据科学的重要组成部分。获取大量的 基因组和临床数据可以帮助我们更好地了解人类基因及其对健康的影响 和疾病。然而,生物医学信息的敏感性是一个关键的瓶颈。 在数据共享和收集工作中,限制了这些数据对科学的效用。这样做的目的是 该项目是利用密码学和信息理论的尖端进展来开发 用于生物医学隐私保护共享和分析的创新计算框架 数据。我们将利用我们最近在开发安全管道方面的成功,为协作 生物医学分析,以满足安全和大规模共享敏感数据的迫切需求。 到目前为止,生物医学中现有隐私保护技术的实际采用 由于两个主要缺陷,该项目通过新颖的技术克服了这两个缺陷,这在很大程度上是有限的 预付款。首先,新兴的加密数据共享框架承诺实现 协作分析管道,可将多个机构的数据安全地结合在一起 理论上的隐私保证成本太高,无法支持复杂和大规模的计算 生物医学分析中所需的。在这个项目中,我们将在以下方面取得最新进展 密码学(例如,安全分布式计算、伪随机相关、零知识 证据)以显著提高加密生物医学数据的可扩展性和安全性 共享管道。第二,现有方法在本地转换数据以保护敏感数据 共享前的信息(例如身份识别技术)要么提供的信息不足以 保护或要求过度干扰,以确保隐私。我们将利用最近的 来自信息理论的工具来开发有效的本地隐私保护方法,以实现 在一系列生物医学数据(包括基因组、转录本、 通过直接利用数据的潜在相关性结构,对医学图像进行分类。 为了促进我们隐私技术的使用,我们将创建我们的生产级软件 工具,并公开发布它们。我们还将积极参与国际标准的制定。 基因组学组织,例如GA4GH和ICDA,将我们的见解纳入社区 生物医学隐私指南。这些目标的成功实现将导致计算 为安全共享和分析海量集合打开大门的方法和软件工具 敏感的基因组和临床数据。我们的长期目标是广泛实现数据共享和 生物医学领域的合作努力,从而使研究人员能够更好地了解 人类健康的分子基础,并推动将新的生物学见解转化为临床。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hyunghoon Cho其他文献

Hyunghoon Cho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hyunghoon Cho', 18)}}的其他基金

Computational Methods for Enhancing Privacy in Biomedical Data Sharing
增强生物医学数据共享隐私的计算方法
  • 批准号:
    10260457
  • 财政年份:
    2020
  • 资助金额:
    $ 39.28万
  • 项目类别:
Computational Methods for Enhancing Privacy in Biomedical Data Sharing
增强生物医学数据共享隐私的计算方法
  • 批准号:
    10017554
  • 财政年份:
    2020
  • 资助金额:
    $ 39.28万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.28万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 39.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了