Computational Methods for Enhancing Privacy in Biomedical Data Sharing
增强生物医学数据共享隐私的计算方法
基本信息
- 批准号:10260457
- 负责人:
- 金额:$ 39.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionBiologicalBiologyBiomedical ResearchBrainClinicClinical DataCodeCollaborationsCommunicationCommunitiesComplexComplex AnalysisComputational BiologyComputer softwareComputing MethodologiesDataData AnalysesData CollectionData ScienceData SetDiseaseElectronic Health RecordEngineeringEnhancement TechnologyEnsureFoundationsGenomeGenomic medicineGenomicsGoalsGuidelinesHealthHumanHuman GeneticsImageIndividualInformation TheoryInstitutesInstitutionInterdisciplinary StudyInternationalKnowledgeLettersMachine LearningMagnetic Resonance ImagingMainstreamingMathematicsMedical GeneticsMedical ImagingMentorshipMethodsModernizationMolecularNaturePatternPharmacologyPoliciesPolynomial ModelsPreservation TechniquePrivacyPrivatizationProductionResearchResearch PersonnelResourcesRiskScienceSecureSecuritySoftware ToolsStructureTechniquesTechnologyTranslationsVisionWorkanalysis pipelinebasebiomedical data sciencecomputer frameworkcomputing resourcescostcryptographydata sharingdesignempoweredexperienceexperimental studygenetic analysisgenome wide association studygenomic datainfancyinnovationinsightnovelprivacy preservationprivacy protectionsoftware developmentstatisticssuccesstask analysistooltranscriptometranscriptomicsweb server
项目摘要
Project Summary
Data sharing is essential to modern biomedical data science. Access to a large amount of
genomic and clinical data can help us better understand human genetics and its impact on health
and disease. However, the sensitive nature of biomedical information presents a key bottleneck
in data sharing and collection efforts, limiting the utility of these data for science. The goal of this
project is to leverage cutting-edge advances in cryptography and information theory to develop
innovative computational frameworks for privacy-preserving sharing and analysis of biomedical
data. We will draw upon our recent success in developing secure pipelines for collaborative
biomedical analyses to address the imminent need to share sensitive data securely and at scale.
Practical adoption of existing privacy-preserving techniques in biomedicine has thus far been
largely limited due to two major pitfalls, which this project overcomes with novel technical
advances. First, emerging cryptographic data sharing frameworks, which promise to enable
collaborative analysis pipelines that securely combine data across multiple institutions with
theoretical privacy guarantees, are too costly to support complex and large-scale computations
required in biomedical analyses. In this project, we will build upon recent advances in
cryptography (e.g., secure distributed computation, pseudorandom correlation, zero-knowledge
proofs) to significantly enhance the scalability and security of cryptographic biomedical data
sharing pipelines. Second, existing approaches that locally transform data to protect sensitive
information before sharing (e.g. de-identification techniques) either offer insufficient levels of
protection or require excessive perturbation in order to ensure privacy. We will draw upon recent
tools from information theory to develop effective local privacy protection methods that achieve
superior utility-privacy tradeoffs on a range of biomedical data including genomes, transcriptomes,
and medical images by directly exploiting the latent correlation structure of the data.
To promote the use of our privacy techniques, we will create production-grade software of our
tools and publicly release them. We will also actively participate in international standard-setting
organizations in genomics, e.g. GA4GH and ICDA, to incorporate our insights into community
guidelines for biomedical privacy. Successful completion of these aims will result in computational
methods and software tools that open the door to secure sharing and analysis of massive sets of
sensitive genomic and clinical data. Our long-term goal is to broadly enable data sharing and
collaboration efforts in biomedicine, thus empowering researchers to better understand the
molecular basis of human health and to drive translation of new biological insights to the clinic.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyunghoon Cho其他文献
Hyunghoon Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyunghoon Cho', 18)}}的其他基金
Computational Methods for Enhancing Privacy in Biomedical Data Sharing
增强生物医学数据共享隐私的计算方法
- 批准号:
10017554 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Computational Methods for Enhancing Privacy in Biomedical Data Sharing
增强生物医学数据共享隐私的计算方法
- 批准号:
10478239 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Standard Grant