Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
基本信息
- 批准号:10309017
- 负责人:
- 金额:$ 34.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountabilityAddressAdmission activityAffectAlgorithmsBiologicalBirthBreast FeedingBuprenorphineCessation of lifeChildChild WelfareChildhoodClinicalCodeCollaborationsDataData LinkagesData ScienceDatabasesDiagnosisDiagnosticDrug MonitoringDrug PrescriptionsEarly InterventionEducational workshopElectronic Health RecordEmergency department visitEnrollmentExposure toFosteringFrightGovernmentHospital CostsHospitalsIncidenceInfantInformation SystemsInpatientsInterventionKnowledgeLength of StayLinkLiteratureMaternal MortalityMedicaidMethadoneMethodologyMethodsMinorityMothersNational Institute of Child Health and Human DevelopmentNeonatalNeonatal Abstinence SyndromeOpioidOutcomeOverdosePersonal SatisfactionPharmaceutical PreparationsPopulationPostpartum PeriodPostpartum WomenPrecision therapeuticsPregnancyPregnant WomenPremature BirthPremature InfantResearchResearch PersonnelRiskServicesSyndromeTennesseeTestingTherapeuticVisitWithdrawalWomanadverse outcomebasecriminal behaviordata sharingexperiencehigh riskholistic approachimprovedinnovationmaternal opioid usematernal outcomemultiple data sourcesnovelopioid epidemicopioid exposureopioid useopioid use disorderoverdose deathoverdose riskpostnatalprecision medicineprenatalprescription opioidprogramsprospectiverelapse riskservice interventionservice utilizationsevere maternal morbidity
项目摘要
PROJECT SUMMARY / ABSTRACT- PROJECT 2
Over the past two decades, the number of women with opioid use disorder (OUD) during pregnancy and the
number of infants born affected by opioids has increased substantially. However, there remain key knowledge
gaps in our understanding of how neonatal and postpartum treatment for opioid use impacts the maternal-
infant dyad. Much of the current research around infants exposed to opioids focuses on those diagnosed with
Neonatal Opioid Withdrawal Syndrome (NOWS), potentially under-identifying opioid-exposed infants that don’t
develop the syndrome but are at risk for adverse outcomes. Postpartum women with OUD are at risk for
outcomes that are detrimental to both mother and infant including overdose, severe maternal morbidity, and
death. While we know medications for OUD, including buprenorphine and methadone, can improve short-term
outcomes for women, evidence of their impact on maternal outcomes and dyadic stability after delivery is
limited. Furthermore, maternal and infant wellbeing is intertwined, yet our understanding of dyadic outcomes
(e.g., retaining custody) is limited and research has primarily focused on separate mother and infant wellbeing.
Improved understanding of dyadic outcomes has the potential to inform tailored therapeutics and precision
medicine for opioid-affected dyads. To address these key knowledge gaps we will utilize data linkages and
novel data science methodologies to 1) develop and validate electronic health record-based algorithms to
identify opioid-exposed infants and their mothers, identify key covariates for dyad wellbeing, and link to state
data systems; 2) test the hypothesis that dyads with prenatal maternal treatment for OUD compared to dyads
with untreated maternal OUD have improved birth outcomes and post-natal service utilization of recommended
services in the first six months postpartum; and 3) test the hypothesis that dyads with prenatal maternal
treatment for OUD compared to dyads with untreated maternal OUD have improved dyadic stability at one-
year postpartum and whether infant treatment modifies those outcomes. This proposal will fill critical
knowledge gaps and create enduring, scalable data science methods that will foster innovation, data sharing,
and research focused on maternal-infant dyads affected by the opioid crisis.
项目摘要 /摘要 - 项目2
在过去的二十年中,怀孕期间的阿片类药物使用障碍(OUD)的女性人数
受阿片类药物影响的婴儿人数大大增加。但是,仍然存在关键知识
在我们了解新生儿和产后治疗阿片类药物使用的差距中,
婴儿二元。当前暴露于阿片类药物的婴儿的许多研究都集中在被诊断的患者上
新生儿阿片类药物戒断综合征(NOWS),可能识别不明的阿片类药物暴露于未识别的婴儿
发展该综合征,但面临广告结果的风险。有OUD的产后妇女有危险
对母亲和婴儿有害的结果,包括过量,严重的孕产妇发病率和
死亡。虽然我们知道包括丁丙诺啡和Meadadone在内的OUD药物可以改善短期
妇女的结果,证明她们对孕产妇结果的影响和分娩后二元稳定性的证据是
有限的。此外,孕产妇和婴儿的健康是交织在一起的,但我们对二元成果的理解
(例如,保留监护权)是有限的,研究主要集中于单独的母亲和婴儿健康。
提高对二元成果的理解有可能告知量身定制的疗法和精度
阿片类药物影响二元的药物。为了解决这些关键知识差距,我们将使用数据链接,并
新的数据科学方法至1)开发和验证基于电子健康记录的算法
识别暴露于阿片类药物的婴儿及其母亲,确定二元福利的关键协变量,并链接到状态
数据系统; 2)检验以下假设,即与二元组相比
未经治疗的母亲OUD改善了推荐的出生结果和产后服务的利用
产后最初六个月的服务; 3)检验以产前母体二元组的假设
与未经治疗的母体OUD的二元组相比,OUD的处理能够提高二元稳定性。
产后和婴儿治疗是否会改变这些结果。该建议将填补关键
知识差距并创建持久的可扩展数据科学方法,以促进创新,数据共享,
研究的重点是受阿片类药物危机影响的产妇二元组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen W Patrick其他文献
Hospital Quality Indicators for Opioid-Exposed Infants: Results From an Expert Consensus Panel.
阿片类药物暴露婴儿的医院质量指标:专家共识小组的结果。
- DOI:
10.1542/peds.2024-065721 - 发表时间:
2024 - 期刊:
- 影响因子:8
- 作者:
Jordan M Harrison;Bradley D Stein;Sarah F Loch;S. Lorch;Stephen W Patrick - 通讯作者:
Stephen W Patrick
The Intergenerational Impact and Trauma of Child Protective Services Referrals on Families.
儿童保护服务转介对家庭的代际影响和创伤。
- DOI:
10.1542/neo.24-11-e763 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Claudia Ocampo;Jasmyne Nelson;Lauren Harrington;Audrey Rush;Stephen W Patrick;Uchenna Anani - 通讯作者:
Uchenna Anani
A Comprehensive Approach to the Opioid Epidemic.
应对阿片类药物流行病的综合方法。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:7.2
- 作者:
Stephen W Patrick - 通讯作者:
Stephen W Patrick
Stephen W Patrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen W Patrick', 18)}}的其他基金
Improving outcomes for substance-affected families in the child welfare system
改善儿童福利系统中受药物影响的家庭的成果
- 批准号:
10734742 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
- 批准号:
10480929 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
- 批准号:
10674901 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别:
Improving Access to Treatment for Women with Opioid Use Disorder
改善患有阿片类药物使用障碍的女性获得治疗的机会
- 批准号:
10442184 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别:
Improving Access to Treatment for Women with Opioid Use Disorder
改善患有阿片类药物使用障碍的女性获得治疗的机会
- 批准号:
10088429 - 财政年份:2018
- 资助金额:
$ 34.55万 - 项目类别:
Neonatal Abstinence Syndrome: Risk of Drug Withdrawal in Opioid-Exposed Infants
新生儿戒断综合症:阿片类药物暴露婴儿的戒断风险
- 批准号:
9000144 - 财政年份:2015
- 资助金额:
$ 34.55万 - 项目类别:
Neonatal Abstinence Syndrome: Risk of Drug Withdrawal in Opioid-Exposed Infants
新生儿戒断综合症:阿片类药物暴露婴儿的戒断风险
- 批准号:
9250249 - 财政年份:2015
- 资助金额:
$ 34.55万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sharp Neonatal Research Institute Clinical Center (Sharp NRI-CC)
夏普新生儿研究所临床中心 (Sharp NRI-CC)
- 批准号:
10683030 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
VoiceLove: An App-Based COMmunication Tool Designed to Address DeliriUm and Improve Family ENgagement and PatIent/Family SatisfaCtion in CriticAlly Ill PaTiEnts (COMMUNICATE)
VoiceLove:一种基于应用程序的通信工具,旨在解决危重患者的谵妄问题并提高家庭参与度和患者/家属满意度(沟通)
- 批准号:
10602709 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
The Application of a Theoretical Framework to Assess the Acceptability of a Health-Related Social Needs Screening Tool Among Black Patients In New York City
应用理论框架评估纽约市黑人患者对健康相关社会需求筛查工具的接受程度
- 批准号:
10826205 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
- 批准号:
10480929 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
- 批准号:
10674901 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别: