Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
基本信息
- 批准号:10483152
- 负责人:
- 金额:$ 78.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAffectAllelesBase PairingBenchmarkingBiologicalBiological AssayBiologyCRISPR screenCatalogsCell physiologyCellsChIP-seqChromatinCodeCollaborationsComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDiseaseDisease PathwayDrug TargetingEpigenetic ProcessGene Expression RegulationGene FrequencyGenesGeneticGenetic TranscriptionGenetic VariationGenetic studyGenomic approachGenomicsGenotypeGoalsGoldHeritabilityHeterogeneityHi-CHuman GeneticsIndividualLettersLightLinkLocalized DiseaseMendelian disorderMethodsModelingMolecularMutationNetwork-basedNucleic Acid Regulatory SequencesParental AgesPathogenicityPathway interactionsPhenotypePopulation GeneticsPricePublicationsRare DiseasesRecording of previous eventsRecordsRegulatory ElementResearch PersonnelResolutionSamplingSourceTestingTherapeuticTimeUntranslated RNAValidationVariantbasecausal variantcell typeclinically actionablecohortdata exchangedata integrationde novo mutationdifferential expressiondisorder riskflexibilityfunctional genomicsgenetic variantgenome sequencinggenome wide association studygenome-widegenomic datahuman diseaseimprovedinsightinterestlarge scale datapressureprogramsrare variantrisk variantsingle cell analysissingle-cell RNA sequencingsuccesstherapeutic targettooltraittranscription factortranscriptomicswhole genome
项目摘要
Project Summary
Over the past decade, genome-wide association studies have discovered complex disease-associated genetic
variants while at the same time whole genome sequencing studies have been identifying risk alleles for
Mendelian and complex diseases. These variants have the potential to shed light on human disease
mechanisms. But there are several important challenges. More than 90% of complex disease associated
variants lie within non-coding regions, posing a challenge of identifying relevant cell types and cell states,
target genes, and regulatory mechanisms. The important task of linking these variants to genes itself can be
challenging. In addition, as our ability to identify de novo and rare mutations for complex and Mendelian
diseases is rapidly expanding, defining the function of those de novo alleles, which genes and pathways they
affect remains uncertain.
To address these challenges, we will predict the functional impact of disease risk variants at the level of
individual variants, individual genes, and pathways to elucidate disease biology. In all aims of this proposal we
will utilize IGVF functional genomic data. In Aim 1, we will predict the regulatory potential of variants in
disease-critical cell types/states at a single base-pair resolution. We will identify pathogenic cell-states by
analyzing single cell transcriptional data sets in a disease context, and then integrate single-cell epigenetic
data to define the regulatory landscape of these rare disease cell-states. These regulatory regions identified in
this analysis can be used to annotate variants for potential function. Finally, to understand functionality of
specific variants in regulatory regions, we quantify selective pressure using large-scale whole genome
sequencing data. In Aim 2, we will predict functional impacts of genes by effectively linking variants to genes.
Defining causal diseases genes is critically important since they may be important for therapeutic targeting. We
develop strategies to use genetic data and functional genomic data to predict downstream genes, and evaluate
these methods with a set of gold-standard casual genes from Mendelian phenotypes. In Aim 3, we focus on
rare and de novo mutations with large effect sizes. Here we recognize that predicting the function of these
alleles requires an understanding of the pathways they effect, models to connect rare non-coding variants to
genes, and strategies to define functionality of the variants based on population genetic parameters. In Aim 4,
we develop a framework to synergize with the IGVF consortium to advance consortium goals, outlining our
integration plan and flexible programmatic framework.
The proposal represents a collaboration between Drs. Soumya Raychaudhuri, Alkes Price, and Shamil
Sunyaev, bringing analytical expertise across functional genomics, single-cell data integration, and population
genetics. These investigators have a history of successful collaborations with a strong publication records
integrating functional genomics data with GWAS and sequencing studies to uncover disease mechanisms.
项目概要
在过去的十年中,全基因组关联研究发现了与疾病相关的复杂遗传
变异,同时全基因组测序研究已经确定了风险等位基因
孟德尔疾病和复杂疾病。这些变异有可能揭示人类疾病
机制。但还有几个重要的挑战。 90%以上的复杂疾病相关
变异位于非编码区域内,对识别相关细胞类型和细胞状态提出了挑战,
靶基因和调控机制。将这些变异与基因本身联系起来的重要任务可以是
具有挑战性的。此外,由于我们有能力识别复杂突变和孟德尔突变的从头突变和罕见突变
疾病正在迅速蔓延,定义了这些从头等位基因的功能,它们所涉及的基因和途径
影响仍不确定。
为了应对这些挑战,我们将预测疾病风险变异的功能影响
个体变异、个体基因和阐明疾病生物学的途径。在本提案的所有目标中,我们
将利用 IGVF 功能基因组数据。在目标 1 中,我们将预测变体的监管潜力
单碱基对分辨率下的疾病关键细胞类型/状态。我们将通过以下方式识别致病细胞状态
分析疾病背景下的单细胞转录数据集,然后整合单细胞表观遗传
数据来定义这些罕见疾病细胞状态的监管格局。这些监管区域确定在
该分析可用于注释潜在功能的变体。最后,了解一下功能
针对调节区域中的特定变异,我们使用大规模全基因组来量化选择压力
测序数据。在目标 2 中,我们将通过有效地将变异与基因联系起来来预测基因的功能影响。
定义致病基因至关重要,因为它们对于治疗靶向可能很重要。我们
制定策略以使用遗传数据和功能基因组数据来预测下游基因,并评估
这些方法使用了一组来自孟德尔表型的金标准休闲基因。在目标 3 中,我们重点关注
具有大效应的罕见突变和从头突变。在这里我们认识到预测这些的功能
等位基因需要了解它们影响的途径,以及将罕见的非编码变体连接到的模型
基因,以及根据群体遗传参数定义变体功能的策略。在目标 4 中,
我们制定了一个与 IGVF 联盟协同推进联盟目标的框架,概述了我们的
整合计划和灵活的计划框架。
该提案代表了博士之间的合作。 Soumya Raychaudhuri、阿尔克斯·普莱斯和沙米尔
Sunyaev,带来功能基因组学、单细胞数据集成和群体的分析专业知识
遗传学。这些研究人员有着成功合作的历史和强大的发表记录
将功能基因组学数据与 GWAS 和测序研究相结合,以揭示疾病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALKES L PRICE其他文献
ALKES L PRICE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALKES L PRICE', 18)}}的其他基金
Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
- 批准号:
10296867 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
- 批准号:
10647775 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Detecting natural selection by comparing African-ancestry populations
通过比较非洲血统人群来检测自然选择
- 批准号:
8242257 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Heritability of complex traits via IBD and IBS in related and unrelated individua
通过 IBD 和 IBS 在相关和无关个体中实现复杂性状的遗传力
- 批准号:
8444904 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8476220 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8217393 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Detecting natural selection by comparing African-ancestry populations
通过比较非洲血统人群来检测自然选择
- 批准号:
8442247 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8685259 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Heritability of complex traits via IBD and IBS in related and unrelated individua
通过 IBD 和 IBS 在相关和无关个体中实现复杂性状的遗传力
- 批准号:
8599787 - 财政年份:2012
- 资助金额:
$ 78.89万 - 项目类别:
Methods for Genome-wide Association Studies in Admixed Populations
混合人群全基因组关联研究的方法
- 批准号:
8281417 - 财政年份:2011
- 资助金额:
$ 78.89万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 78.89万 - 项目类别:
Research Grant














{{item.name}}会员




