Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
基本信息
- 批准号:10296867
- 负责人:
- 金额:$ 40.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAffectAllelesBase PairingBenchmarkingBiologicalBiological AssayBiologyCRISPR screenCatalogsCell physiologyCellsChIP-seqChromatinCodeCollaborationsComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDiseaseDisease PathwayDrug TargetingEpigenetic ProcessGene Expression RegulationGene FrequencyGenesGeneticGenetic TranscriptionGenetic VariationGenetic studyGenomic approachGenomicsGenotypeGoalsGoldHeritabilityHeterogeneityHi-CHuman GeneticsIndividualLettersLightLinkLocalized DiseaseMendelian disorderMethodsModelingMolecularMutationNetwork-basedNucleic Acid Regulatory SequencesParental AgesPathogenicityPathway interactionsPhenotypePopulation GeneticsPricePublicationsRare DiseasesRecording of previous eventsRecordsRegulatory ElementResearch PersonnelResolutionSamplingSourceTestingTherapeuticTimeUntranslated RNAValidationVariantbasecausal variantcell typeclinically actionablecohortdata exchangedata integrationde novo mutationdifferential expressiondisorder riskflexibilityfunctional genomicsgenetic variantgenome sequencinggenome wide association studygenome-widegenomic datahuman diseaseimprovedinsightinterestlarge scale datapressureprogramsrare variantrisk variantsingle cell analysissingle-cell RNA sequencingsuccesstherapeutic targettooltraittranscription factortranscriptomicswhole genome
项目摘要
Project Summary
Over the past decade, genome-wide association studies have discovered complex disease-associated genetic
variants while at the same time whole genome sequencing studies have been identifying risk alleles for
Mendelian and complex diseases. These variants have the potential to shed light on human disease
mechanisms. But there are several important challenges. More than 90% of complex disease associated
variants lie within non-coding regions, posing a challenge of identifying relevant cell types and cell states,
target genes, and regulatory mechanisms. The important task of linking these variants to genes itself can be
challenging. In addition, as our ability to identify de novo and rare mutations for complex and Mendelian
diseases is rapidly expanding, defining the function of those de novo alleles, which genes and pathways they
affect remains uncertain.
To address these challenges, we will predict the functional impact of disease risk variants at the level of
individual variants, individual genes, and pathways to elucidate disease biology. In all aims of this proposal we
will utilize IGVF functional genomic data. In Aim 1, we will predict the regulatory potential of variants in
disease-critical cell types/states at a single base-pair resolution. We will identify pathogenic cell-states by
analyzing single cell transcriptional data sets in a disease context, and then integrate single-cell epigenetic
data to define the regulatory landscape of these rare disease cell-states. These regulatory regions identified in
this analysis can be used to annotate variants for potential function. Finally, to understand functionality of
specific variants in regulatory regions, we quantify selective pressure using large-scale whole genome
sequencing data. In Aim 2, we will predict functional impacts of genes by effectively linking variants to genes.
Defining causal diseases genes is critically important since they may be important for therapeutic targeting. We
develop strategies to use genetic data and functional genomic data to predict downstream genes, and evaluate
these methods with a set of gold-standard casual genes from Mendelian phenotypes. In Aim 3, we focus on
rare and de novo mutations with large effect sizes. Here we recognize that predicting the function of these
alleles requires an understanding of the pathways they effect, models to connect rare non-coding variants to
genes, and strategies to define functionality of the variants based on population genetic parameters. In Aim 4,
we develop a framework to synergize with the IGVF consortium to advance consortium goals, outlining our
integration plan and flexible programmatic framework.
The proposal represents a collaboration between Drs. Soumya Raychaudhuri, Alkes Price, and Shamil
Sunyaev, bringing analytical expertise across functional genomics, single-cell data integration, and population
genetics. These investigators have a history of successful collaborations with a strong publication records
integrating functional genomics data with GWAS and sequencing studies to uncover disease mechanisms.
项目摘要
在过去的十年里,全基因组关联研究发现了与疾病相关的复杂基因
变种,同时全基因组测序研究已经确定了风险等位基因
孟德尔式的复杂疾病。这些变种有可能揭示人类疾病。
机制。但也有几个重要的挑战。90%以上的复杂疾病与
变异体位于非编码区内,这给识别相关细胞类型和细胞状态带来了挑战,
靶基因和调控机制。将这些变异与基因本身联系起来的重要任务可能是
很有挑战性。此外,由于我们识别复杂和孟德尔基因的从头开始和罕见突变的能力
疾病正在迅速扩大,定义了这些从头开始的等位基因的功能,哪些基因和途径
影响仍不确定。
为了应对这些挑战,我们将在以下水平预测疾病风险变量的功能影响
阐明疾病生物学的个体变异、个体基因和途径。在这项建议的所有目标中,我们
将利用IGVF功能基因组数据。在目标1中,我们将预测变异体在
单个碱基对分辨的疾病关键细胞类型/状态。我们将通过以下方式确定致病细胞状态
分析疾病背景下的单细胞转录数据集,然后整合单细胞表观遗传学
定义这些罕见疾病细胞状态的监管格局的数据。中确定的这些监管区域
这种分析可以用来注释潜在函数的变体。最后,要了解的功能
在调控区域的特定变异中,我们使用大规模的全基因组来量化选择压力
测序数据。在目标2中,我们将通过有效地将变体与基因联系起来来预测基因的功能影响。
定义因果疾病基因是至关重要的,因为它们可能对治疗靶点很重要。我们
制定策略,利用遗传数据和功能基因组数据来预测下游基因,并评估
这些方法使用了一组来自孟德尔表型的黄金标准随意基因。在目标3中,我们将重点放在
效应大的罕见和从头开始的突变。在这里,我们认识到,预测这些因素的功能
等位基因需要了解它们影响的途径,以及将罕见的非编码变体连接到
基因,以及根据群体遗传参数定义变异体功能的策略。在目标4中,
我们开发了一个框架来与IGVF财团协同工作,以推进财团的目标,概述我们的
整合计划和灵活的方案框架。
该提案代表了Soumya Raychaudhuri博士、Alkes Price博士和Shamil博士之间的合作
Sunyaev,带来了跨越功能基因组学、单细胞数据集成和种群的分析专业知识
遗传学。这些调查人员有成功合作的历史,有很强的出版记录
将功能基因组学数据与GWAS和测序研究相结合,以揭示疾病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALKES L PRICE其他文献
ALKES L PRICE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALKES L PRICE', 18)}}的其他基金
Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
- 批准号:
10647775 - 财政年份:2021
- 资助金额:
$ 40.9万 - 项目类别:
Predicting the impact of genetic variants, genes and pathways on human Disease
预测遗传变异、基因和途径对人类疾病的影响
- 批准号:
10483152 - 财政年份:2021
- 资助金额:
$ 40.9万 - 项目类别:
Detecting natural selection by comparing African-ancestry populations
通过比较非洲血统人群来检测自然选择
- 批准号:
8242257 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Heritability of complex traits via IBD and IBS in related and unrelated individua
通过 IBD 和 IBS 在相关和无关个体中实现复杂性状的遗传力
- 批准号:
8444904 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8476220 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8217393 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Detecting natural selection by comparing African-ancestry populations
通过比较非洲血统人群来检测自然选择
- 批准号:
8442247 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Liability threshold modeling of genes and environment in case-control studies
病例对照研究中基因和环境的责任阈值模型
- 批准号:
8685259 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Heritability of complex traits via IBD and IBS in related and unrelated individua
通过 IBD 和 IBS 在相关和无关个体中实现复杂性状的遗传力
- 批准号:
8599787 - 财政年份:2012
- 资助金额:
$ 40.9万 - 项目类别:
Methods for Genome-wide Association Studies in Admixed Populations
混合人群全基因组关联研究的方法
- 批准号:
8281417 - 财政年份:2011
- 资助金额:
$ 40.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.9万 - 项目类别:
Research Grant