Computational approaches for protein functional analysis using CRISPR screens
使用 CRISPR 筛选进行蛋白质功能分析的计算方法
基本信息
- 批准号:10483135
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBioinformaticsBiologicalBiologyBiotechnologyCRISPR screenCategoriesClustered Regularly Interspaced Short Palindromic RepeatsComputing MethodologiesDataData AnalysesDevelopmentDiseaseEpigenetic ProcessEvaluationGoalsKnock-outLibrariesMethodologyMethodsPhysiologyProteinsProtocols documentationRegulationResearchRoleTechniquesTertiary Protein StructureTranscriptional Regulationbiological systemsdesignepigenetic regulationexperimental studyimprovedinnovationinsightnovelprotein functionprotein protein interactionprotein structuretranscription factortranscription regulatory network
项目摘要
Abstract
The development of a high-throughput biotechnology highly relies on relevant computational methods for
systematic optimization and data analysis. On the other hand, the development of bioinformatics methods
requires in-depth understanding of the biological systems and the experimental protocols. The long-term goal
of our lab is to develop computational methods that can be seamlessly integrated with high-throughput
experiments to address biological questions, with a focus on transcriptional and epigenetic regulations.
Understanding protein functions is a fundamental aim in biology. The recent advances of CRISPR screening
techniques have enabled functional studies of proteins in a high-throughput manner, leading to novel discoveries
beyond the capacity of traditional methods. During the next five years, our short-term goal is to develop
solutions to boost the utilization of high-throughput CRISPR screens for protein functional analysis. To achieve
this goal, we propose three research topics:
1) Prediction of sgRNA knockout effects for improved sgRNA library design in CRSIPR screens. This will
address the bioinformatics needs in the design of CRISPR screens;
2) Protein domain analysis using CRISPR tiling-sgRNA screens. This will lead to innovative solutions for the
studies of protein domain and structure.
3) Inference of transcriptional regulatory networks from CRISPR screen and -omic data. This will lead to the
development of new methodology to address an open problem involving protein-protein interactions and
regulations of transcription factors and epigenetic regulators.
Collectively, the proposed project will contribute new methods to enrich the toolbox for protein functional
analysis, and will provide novel insights into the fields of transcriptional and epigenetic regulations.
摘要
高通量生物技术的发展高度依赖于相关的计算方法,
系统优化和数据分析。另一方面,生物信息学方法的发展
需要深入了解生物系统和实验方案。远景目标
我们实验室的目标是开发可以与高通量无缝集成的计算方法
实验,以解决生物学问题,重点是转录和表观遗传调控。
了解蛋白质的功能是生物学的一个基本目标。CRISPR筛选的最新进展
技术已经使蛋白质的功能研究以高通量的方式,导致新的发现
超出了传统方法的能力。未来五年,我们的短期目标是发展
解决方案,以提高高通量CRISPR筛选用于蛋白质功能分析的利用率。实现
为此,我们提出三个研究课题:
1)预测CRSIPR筛选中改进的sgRNA文库设计的sgRNA敲除效应。这将
解决CRISPR筛选设计中的生物信息学需求;
2)使用CRISPR平铺-sgRNA筛选的蛋白质结构域分析。这将导致创新的解决方案,
蛋白质结构域和结构的研究。
3)从CRISPR筛选和组学数据推断转录调控网络。这会导致
开发新的方法来解决涉及蛋白质-蛋白质相互作用的开放性问题,
转录因子和表观遗传调节因子的调节。
总的来说,拟议的项目将有助于新的方法,以丰富蛋白质功能的工具箱
分析,并将提供新的见解转录和表观遗传调控领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Xu其他文献
Han Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Xu', 18)}}的其他基金
Computational approaches for protein functional analysis using CRISPR screens
使用 CRISPR 筛选进行蛋白质功能分析的计算方法
- 批准号:
10027200 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Computational approaches for protein functional analysis using CRISPR screens
使用 CRISPR 筛选进行蛋白质功能分析的计算方法
- 批准号:
10705641 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Computational approaches for protein functional analysis using CRISPR screens
使用 CRISPR 筛选进行蛋白质功能分析的计算方法
- 批准号:
10260504 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 40.5万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 40.5万 - 项目类别:
Discovery Grants Program - Individual