Defining Mechanical Landscapes at Cell-Cell Junctions
定义细胞与细胞连接处的机械景观
基本信息
- 批准号:10487435
- 负责人:
- 金额:$ 38.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Biological SciencesCadherinsCell TherapyCell membraneCell physiologyCellsDNADNA ProbesDNA SequenceDevelopmentDiseaseEngineeringEventExtracellular MatrixFoundationsGoalsGrowthImageImmune responseIndividualIntercellular JunctionsLaboratoriesLigandsLipidsMammalian CellMeasurementMeasuresMechanicsMembraneMolecularMonitorMorphogenesisNeoplasm MetastasisPathologic ProcessesPhysiological ProcessesPhysiologyPlayProcessRegenerative MedicineRegulationRoleShapesSignal TransductionSurfaceTechniquesTissue Engineeringbasecancer cellcell motilitydevelopmental diseasefluorescence microscopeforce sensorimmune activationinsightmechanical forcemechanotransductionneural platenotch proteinnovelnovel strategiessensorsingle moleculetissue regenerationtooltumorwound healing
项目摘要
PROJECT SUMMARY
Mechanical forces play fundamental roles in many intrinsic and collective cellular processes, including tissue
regeneration, morphogenesis, and tumor metastasis. While extensive studies have focused on the forces
between cells and extracellular matrices, mechanical interactions among individual cells appear to be
important yet poorly characterized. These intercellular forces are known to be critical during wound healing,
cancer cell invasion, and other developmental and homeostatic processes. However, the molecular principles
that govern these finely balanced mechanotransduction events are still poorly understood. To depict the
mechanisms of these collective cellular processes, it is essential to measure intercellular forces and correlate
the determined mechanical landscapes with the specific molecular machineries that regulate cellular signaling.
Our lab have proposed precise and easy-to-use DNA-based sensors to visualize and quantify intercellular
forces. We and others recently developed an efficient lipid-based approach to anchor designer DNA
sequences onto the external surfaces of mammalian cell membranes. By employing this approach,
membrane-anchored DNA probes allow sensitive imaging of a broad range of molecular forces at cell-cell
junctions. Current mechanobiology studies are based on techniques typically performed in only a few
specialized laboratories. The proposed sensors are compatible with readily accessible fluorescence
microscopes, highly robust and versatile, and easy to prepare and use. To further develop and adapt these
sensors to study intercellular mechanosensitive events, the future research plan is to: (1) engineer and
optimize DNA-based tensile and compressive force sensors to measure a broad range of intercellular forces at
the single-molecule level. (2) Use well-characterized cadherin-based mechanotransduction as an example,
quantify and monitor forces at cell-cell junctions during collective cell migrations and neural plate shaping. (3)
Apply these sensors to investigate the mechanical roles of Notch activation in immune cell activation. Notch
signaling is highly conserved in different developmental and disease processes. Intercellular ligand-induced
mechanical forces are required in Notch activation. Dependent on the environmental and mechanical context,
Notch activation can have contrary effect in the regulation of tissue growth and immune responses. Our
results will provide unique insights to elucidate the mechanical mechanisms of Notch signal activation.
Our long-term goal is to make intercellular force measurements widely implemented in life science laboratories.
These novel sensors will be broadly used to understand the basic mechanical principles of development,
physiology, and disease, which will also serve as the critical foundation for developing novel strategies in
tissue engineering, regenerative medicine, and cell therapy.
项目总结
机械力在许多内在的和集体的细胞过程中扮演着基本的角色,包括组织
再生、形态发生和肿瘤转移。虽然广泛的研究集中在部队
在细胞和细胞外基质之间,单个细胞之间的机械相互作用似乎是
很重要,但特点不佳。众所周知,这些细胞间力在伤口愈合过程中是至关重要的,
癌细胞侵袭,以及其他发育和动态平衡过程。然而,分子原理
控制这些精细平衡的机械转导事件的机制仍然知之甚少。为了描绘出
这些集体细胞过程的机制,测量细胞间力和相互关系是至关重要的
确定的机械景观与特定的分子机制,调节细胞信号。
我们的实验室已经提出了精确和易于使用的基于DNA的传感器来可视化和量化细胞间
力量。我们和其他人最近开发了一种有效的基于脂质的方法来锚定设计师DNA
哺乳动物细胞膜外表面上的序列。通过采用这种方法,
膜锚定的DNA探针可以灵敏地成像细胞-细胞之间的大范围分子作用力
交汇点。目前的机械生物学研究是基于通常仅在少数情况下进行的技术
专业实验室。所建议的传感器与容易获得的荧光兼容
显微镜,高度坚固和多功能,易于准备和使用。为了进一步发展和适应这些
传感器用于研究细胞间的机械敏感事件,未来的研究计划是:(1)工程和
优化基于DNA的拉力和压力传感器,以测量大范围的细胞间力
单分子水平。(2)以表征良好的钙粘素为基础的机械转导为例,
量化和监测集体细胞迁移和神经板成形过程中细胞-细胞连接处的作用力。(3)
应用这些传感器来研究Notch激活在免疫细胞激活中的机械作用。凹槽
信号在不同的发育和疾病过程中高度保守。细胞间配体诱导
在激活缺口时需要机械力。取决于环境和机械环境,
缺口的激活在组织生长和免疫反应的调节中可能起到相反的作用。我们的
这些结果将为阐明Notch信号激活的机制提供独特的见解。
我们的长期目标是使细胞间力测量在生命科学实验室得到广泛应用。
这些新型传感器将被广泛用于理解开发的基本机械原理,
生理学和疾病,这也将成为制定新战略的关键基础
组织工程学、再生医学和细胞疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingxu You其他文献
Mingxu You的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingxu You', 18)}}的其他基金
Defining Mechanical Landscapes at Cell-Cell Junctions
定义细胞与细胞连接处的机械景观
- 批准号:
9797402 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
Defining Mechanical Landscapes at Cell-Cell Junctions
定义细胞与细胞连接处的机械景观
- 批准号:
10244995 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
相似国自然基金
增生性玻璃体视网膜病变早期钙黏蛋白(Cadherins)异常表达启动视网膜色素上皮细胞游离的分子机制
- 批准号:81770939
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
Beta-catenin/Cadherins, EphBs 在平衡颅神经嵴细胞的粘附和迁徙机制的研究
- 批准号:81400494
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Cadherins与nectins在青少年期慢性社会应激损害小鼠前额叶形态可塑性与功能中的作用
- 批准号:81401129
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cadherins, contact normalization, and targeting podoplanin to treat oral cancer
钙粘蛋白、接触正常化和靶向平足蛋白治疗口腔癌
- 批准号:
10437217 - 财政年份:2022
- 资助金额:
$ 38.72万 - 项目类别:
Regulation Of Tissue Growth And Morphogenesis By Fat Cadherins
脂肪钙粘蛋白对组织生长和形态发生的调节
- 批准号:
10275573 - 财政年份:2021
- 资助金额:
$ 38.72万 - 项目类别:
Regulation Of Tissue Growth And Morphogenesis By Fat Cadherins
脂肪钙粘蛋白对组织生长和形态发生的调节
- 批准号:
10470309 - 财政年份:2021
- 资助金额:
$ 38.72万 - 项目类别:
RECODE: New technologies to illuminate and harness cadherins for the reproducible production of cortical tissue in human cerebral organoids
RECODE:阐明和利用钙粘蛋白在人脑类器官中可重复生产皮质组织的新技术
- 批准号:
2034495 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Standard Grant
How do the cadherins Fat and Dachsous control polarised cell behaviours during development?
钙粘蛋白 Fat 和 Dachsous 如何控制发育过程中的极化细胞行为?
- 批准号:
BB/S007342/1 - 财政年份:2019
- 资助金额:
$ 38.72万 - 项目类别:
Research Grant
Integrative Structural and Functional Characterization of Tip-Link Cadherins Deafness
Tip-Link 钙粘蛋白耳聋的综合结构和功能表征
- 批准号:
10359738 - 财政年份:2018
- 资助金额:
$ 38.72万 - 项目类别:
How do the atypical cadherins Fat and Dachsous integrate growth and patterning during development?
非典型钙粘蛋白 Fat 和 Dachsous 在发育过程中如何整合生长和模式?
- 批准号:
BB/R016925/1 - 财政年份:2018
- 资助金额:
$ 38.72万 - 项目类别:
Research Grant
Integrative Structural and Functional Characterization of Tip-Link Cadherins Deafness
Tip-Link 钙粘蛋白耳聋的综合结构和功能表征
- 批准号:
9502717 - 财政年份:2018
- 资助金额:
$ 38.72万 - 项目类别: