Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
基本信息
- 批准号:10489832
- 负责人:
- 金额:$ 54.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntigen PresentationAntigensAntitumor ResponseArtificial nanoparticlesBindingBloodBypassCCNE1 geneCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCOVID-19 patientCellsClinicClinicalClone CellsCommunity Clinical Oncology ProgramCost SavingsDataData SetDisadvantagedEngineeringExhibitsFundingGenesGeneticGenetic EngineeringGrantHaplotypesHeartHistocompatibility Antigens Class IIImmunooncologyImmunotherapyInfusion proceduresKRAS2 geneLengthLibrariesMHC Class II GenesMHC antigenMalignant neoplasm of ovaryMethodologyMethodsMutateMutationNanotechnologyOncogenesPatientsPeptidesPeripheral Blood Mononuclear CellPopulationPreparationProtein EngineeringProteinsProtocols documentationReagentReportingResourcesSpecificityT cell responseT cell therapyT-Cell ReceptorT-Cell Receptor GenesT-LymphocyteT-Lymphocyte SubsetsTP53 geneTechnologyTherapeuticTimeTumor AntigensValidationWorkantigen-specific T cellsantitumor effectbasecancer cellcancer immunotherapycolon cancer patientscostdesigndesign and constructioninnovationinventionmicrochipmutantnanoneoantigenspandemic diseaseprediction algorithmpublic databasetooltumor
项目摘要
Project summary
Much of cancer immunotherapy is focused on engineering or activating tumor-antigen specific CD8+ T cells and,
to a lesser extent, CD4+ T cells. In particular, neoantigen-specific T cells are attractive because they can kill
cancer cells with high specificity. 1 A general approach starts with identifying T cells that recognize neoantigens
broadly expressed within the tumor, isolating the T cells and determining their T cell receptor (TCR) sequences.
These TCRs can then be transfected into patient T cells, perhaps with additional genetic engineering2 to promote
more durable anti-tumor effects, and expanded into an infusion product for patient treatment. 3 In fact, this
approach has recently entered the clinic, with one trial (NCT03970382) drawing from inventions from an NCI-
funded CCNE U54 grant led by the PI of this proposal. 4,5 However, there are still a number of fundamental and
technological challenges associated with advancing neoantigen-specific TCR-engineered therapies. First, the
discovery of neoantigen-specific TCRs relies on guidance from algorithms, such as NET MHCpan 4.1, to predict
antigen/MHC presentation (based upon binding and other considerations), and many neoantigens arising from
truncal mutations, such as mutant KRAS or mutant TP53, are predicted as unlikely, yet have been reported as
clinically effective targets. 6,7,8 Second, neoantigen-specific CD4+ T cells and their class II restricted neoantigens,
while identified as important for immunotherapy-induced anti-tumor responses, 9,10 remain a largely untapped
therapeutic resource, with prediction algorithms 11,12 for Class II antigen/MHC binding less developed. A third
challenge is that analysis of a patient blood for neoantigen-specific T cells typically requires upwards of 20M
peripheral blood mononuclear cells (PBMCs), and so isn't particularly efficient. Here we propose 3 specific Aims
designed to address these outstanding issues. At the heart of the technology solutions are combinations of
engineered nanoparticles (NPs) and biomolecular engineered constructs designed for efficient and selective
capture, analysis, and validation of truncal neoantigen-specific CD4+ and CD8+ T cell populations. Significant
preliminary data is presented for all 3 Aims, some of which uses COVID-19 patient data generated by our work
during the current pandemic. 13,14 The result of this work will be a powerful toolset designed for a minimally-biased
search for CD4+ and CD8+ T cell populations against truncal neoantigens (independent of patient HLA
haplotype), a toolset designed for the rapid validation and characterization of those neoantigen-specific T cell
clonotypes, and a public data base of Class I and Class II truncal neoantigens and T cell receptor genes specific
to those neoantigens.
项目概要
许多癌症免疫疗法都集中于改造或激活肿瘤抗原特异性 CD8+ T 细胞,
在较小程度上,CD4+ T 细胞。特别是新抗原特异性 T 细胞很有吸引力,因为它们可以杀死
癌细胞具有高度特异性。 1 一般方法从识别识别新抗原的 T 细胞开始
在肿瘤内广泛表达,分离 T 细胞并确定其 T 细胞受体 (TCR) 序列。
然后可以将这些 TCR 转染到患者 T 细胞中,或许还需要额外的基因工程2来促进
更持久的抗肿瘤作用,并扩展为输液产品用于患者治疗。 3 事实上,这
该方法最近已进入临床,其中一项试验 (NCT03970382) 借鉴了 NCI 的发明
资助了由本提案的 PI 领导的 CCNE U54 赠款。 4,5 然而,仍然存在一些基本的和
与推进新抗原特异性 TCR 工程疗法相关的技术挑战。首先,
新抗原特异性 TCR 的发现依赖于算法(例如 NET MHCpan 4.1)的指导来预测
抗原/MHC 呈递(基于结合和其他考虑因素),以及许多由
躯干突变,例如突变型 KRAS 或突变型 TP53,被预测为不太可能发生,但已被报道为
临床上有效的目标。 6,7,8 其次,新抗原特异性 CD4+ T 细胞及其 II 类限制性新抗原,
虽然 9,10 被认为对于免疫疗法诱导的抗肿瘤反应很重要,但它在很大程度上仍然是一个尚未开发的领域
治疗资源,II 类抗原/MHC 结合的预测算法 11,12 尚未开发。第三个
挑战在于,分析患者血液中的新抗原特异性 T 细胞通常需要超过 20M
外周血单核细胞 (PBMC),因此效率不是特别高。在这里我们提出3个具体目标
旨在解决这些突出问题。技术解决方案的核心是以下组合:
工程纳米颗粒 (NP) 和生物分子工程结构,旨在实现高效和选择性
捕获、分析和验证躯干新抗原特异性 CD4+ 和 CD8+ T 细胞群。重要的
提供了所有 3 个目标的初步数据,其中一些目标使用我们工作生成的 COVID-19 患者数据
当前疫情期间。 13,14 这项工作的结果将是一个强大的工具集,专为最小偏差而设计
搜索针对躯干新抗原的 CD4+ 和 CD8+ T 细胞群(独立于患者 HLA)
单倍型),旨在快速验证和表征这些新抗原特异性 T 细胞的工具集
克隆型,以及 I 类和 II 类树干新抗原和 T 细胞受体基因特异性的公共数据库
那些新抗原。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James R. Heath其他文献
Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
- DOI:
10.1186/s13073-023-01278-0 - 发表时间:
2024-01-06 - 期刊:
- 影响因子:11.200
- 作者:
Daniela Matuozzo;Estelle Talouarn;Astrid Marchal;Peng Zhang;Jeremy Manry;Yoann Seeleuthner;Yu Zhang;Alexandre Bolze;Matthieu Chaldebas;Baptiste Milisavljevic;Adrian Gervais;Paul Bastard;Takaki Asano;Lucy Bizien;Federica Barzaghi;Hassan Abolhassani;Ahmad Abou Tayoun;Alessandro Aiuti;Ilad Alavi Darazam;Luis M. Allende;Rebeca Alonso-Arias;Andrés Augusto Arias;Gokhan Aytekin;Peter Bergman;Simone Bondesan;Yenan T. Bryceson;Ingrid G. Bustos;Oscar Cabrera-Marante;Sheila Carcel;Paola Carrera;Giorgio Casari;Khalil Chaïbi;Roger Colobran;Antonio Condino-Neto;Laura E. Covill;Ottavia M. Delmonte;Loubna El Zein;Carlos Flores;Peter K. Gregersen;Marta Gut;Filomeen Haerynck;Rabih Halwani;Selda Hancerli;Lennart Hammarström;Nevin Hatipoğlu;Adem Karbuz;Sevgi Keles;Christèle Kyheng;Rafael Leon-Lopez;Jose Luis Franco;Davood Mansouri;Javier Martinez-Picado;Ozge Metin Akcan;Isabelle Migeotte;Pierre-Emmanuel Morange;Guillaume Morelle;Andrea Martin-Nalda;Giuseppe Novelli;Antonio Novelli;Tayfun Ozcelik;Figen Palabiyik;Qiang Pan-Hammarström;Rebeca Pérez de Diego;Laura Planas-Serra;Daniel E. Pleguezuelo;Carolina Prando;Aurora Pujol;Luis Felipe Reyes;Jacques G. Rivière;Carlos Rodriguez-Gallego;Julian Rojas;Patrizia Rovere-Querini;Agatha Schlüter;Mohammad Shahrooei;Ali Sobh;Pere Soler-Palacin;Yacine Tandjaoui-Lambiotte;Imran Tipu;Cristina Tresoldi;Jesus Troya;Diederik van de Beek;Mayana Zatz;Pawel Zawadzki;Saleh Zaid Al-Muhsen;Mohammed Faraj Alosaimi;Fahad M. Alsohime;Hagit Baris-Feldman;Manish J. Butte;Stefan N. Constantinescu;Megan A. Cooper;Clifton L. Dalgard;Jacques Fellay;James R. Heath;Yu-Lung Lau;Richard P. Lifton;Tom Maniatis;Trine H. Mogensen;Horst von Bernuth;Alban Lermine;Michel Vidaud;Anne Boland;Jean-François Deleuze;Robert Nussbaum;Amanda Kahn-Kirby;France Mentre;Sarah Tubiana;Guy Gorochov;Florence Tubach;Pierre Hausfater;Isabelle Meyts;Shen-Ying Zhang;Anne Puel;Luigi D. Notarangelo;Stephanie Boisson-Dupuis;Helen C. Su;Bertrand Boisson;Emmanuelle Jouanguy;Jean-Laurent Casanova;Qian Zhang;Laurent Abel;Aurélie Cobat - 通讯作者:
Aurélie Cobat
C60's smallest cousin
C60 的最小“亲戚”
- DOI:
10.1038/31579 - 发表时间:
1998-06-25 - 期刊:
- 影响因子:48.500
- 作者:
James R. Heath - 通讯作者:
James R. Heath
Protein Catalyzed Capture (PCC) Agents for Antigen Targeting.
用于抗原靶向的蛋白质催化捕获 (PCC) 试剂。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Idso;B. Lai;Heather D Agnew;James R. Heath - 通讯作者:
James R. Heath
Planar Patch-Clamp Electrodes for Single Cell and Neural Network Studies
- DOI:
10.1016/j.bpj.2009.12.3287 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
John M. Nagarah;Daniel A. Wagenaar;James R. Heath - 通讯作者:
James R. Heath
Stereochemical engineering of a peptide macrocycle allosteric inhibitor of phospho-Akt2 controls cell penetration by fine-tuning macrocycle-cell membrane interactions
磷酸 Akt2 肽大环变构抑制剂的立体化学工程通过微调大环 - 细胞膜相互作用来控制细胞渗透
- DOI:
10.26434/chemrxiv-2021-kldh7 - 发表时间:
2021 - 期刊:
- 影响因子:5.9
- 作者:
Arundhati Nag;A. Mafi;Samir R Das;Mary Beth Yu;Belen Alvarez;W. Goddard;James R. Heath - 通讯作者:
James R. Heath
James R. Heath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James R. Heath', 18)}}的其他基金
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
- 批准号:
10708901 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10907268 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
- 批准号:
10526101 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10526103 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10708924 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
Data-driven Patient-Specific Agent Based Models of Metastatic Melanoma for Immunotherapy Response Prediction
用于免疫治疗反应预测的数据驱动的基于患者特异性药物的转移性黑色素瘤模型
- 批准号:
10831325 - 财政年份:2022
- 资助金额:
$ 54.79万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10297588 - 财政年份:2021
- 资助金额:
$ 54.79万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10673935 - 财政年份:2021
- 资助金额:
$ 54.79万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 54.79万 - 项目类别:
Continuing Grant














{{item.name}}会员




