Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
基本信息
- 批准号:10673935
- 负责人:
- 金额:$ 52.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntigen PresentationAntigensAntitumor ResponseArtificial nanoparticlesBindingBloodBypassCCNE1 geneCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCOVID-19 patientCellsClinicClinicalClone CellsCommunity Clinical Oncology ProgramCost SavingsDataData SetDisadvantagedEngineeringExhibitsFundingGenesGenetic EngineeringGrantHaplotypesHeartHistocompatibility Antigens Class IIImmunooncologyImmunotherapyInfusion proceduresKRAS2 geneLengthLibrariesMHC Class II GenesMalignant neoplasm of ovaryMethodologyMethodsMutateMutationNanotechnologyOncogenesPatientsPeptidesPeripheral Blood Mononuclear CellPopulationPreparationProtein EngineeringProteinsProtocols documentationReagentReportingResourcesSpecificityT cell responseT cell therapyT-Cell ReceptorT-Cell Receptor GenesT-LymphocyteT-Lymphocyte SubsetsTP53 geneTechnologyTherapeuticTimeTransfectionTumor AntigensValidationWorkalpha-beta T-Cell Receptorantigen-specific T cellsantitumor effectcancer cellcancer immunotherapycolon cancer patientscostcurrent pandemicdesigndesign and constructioninnovationinventionmicrochipmutantnanoneoantigenspandemic diseaseprediction algorithmpublic databasetooltumor
项目摘要
Project summary
Much of cancer immunotherapy is focused on engineering or activating tumor-antigen specific CD8+ T cells and,
to a lesser extent, CD4+ T cells. In particular, neoantigen-specific T cells are attractive because they can kill
cancer cells with high specificity. 1 A general approach starts with identifying T cells that recognize neoantigens
broadly expressed within the tumor, isolating the T cells and determining their T cell receptor (TCR) sequences.
These TCRs can then be transfected into patient T cells, perhaps with additional genetic engineering2 to promote
more durable anti-tumor effects, and expanded into an infusion product for patient treatment. 3 In fact, this
approach has recently entered the clinic, with one trial (NCT03970382) drawing from inventions from an NCI-
funded CCNE U54 grant led by the PI of this proposal. 4,5 However, there are still a number of fundamental and
technological challenges associated with advancing neoantigen-specific TCR-engineered therapies. First, the
discovery of neoantigen-specific TCRs relies on guidance from algorithms, such as NET MHCpan 4.1, to predict
antigen/MHC presentation (based upon binding and other considerations), and many neoantigens arising from
truncal mutations, such as mutant KRAS or mutant TP53, are predicted as unlikely, yet have been reported as
clinically effective targets. 6,7,8 Second, neoantigen-specific CD4+ T cells and their class II restricted neoantigens,
while identified as important for immunotherapy-induced anti-tumor responses, 9,10 remain a largely untapped
therapeutic resource, with prediction algorithms 11,12 for Class II antigen/MHC binding less developed. A third
challenge is that analysis of a patient blood for neoantigen-specific T cells typically requires upwards of 20M
peripheral blood mononuclear cells (PBMCs), and so isn't particularly efficient. Here we propose 3 specific Aims
designed to address these outstanding issues. At the heart of the technology solutions are combinations of
engineered nanoparticles (NPs) and biomolecular engineered constructs designed for efficient and selective
capture, analysis, and validation of truncal neoantigen-specific CD4+ and CD8+ T cell populations. Significant
preliminary data is presented for all 3 Aims, some of which uses COVID-19 patient data generated by our work
during the current pandemic. 13,14 The result of this work will be a powerful toolset designed for a minimally-biased
search for CD4+ and CD8+ T cell populations against truncal neoantigens (independent of patient HLA
haplotype), a toolset designed for the rapid validation and characterization of those neoantigen-specific T cell
clonotypes, and a public data base of Class I and Class II truncal neoantigens and T cell receptor genes specific
to those neoantigens.
项目总结
许多癌症免疫治疗都集中在改造或激活肿瘤抗原特异性CD8+T细胞上,
在较小的程度上,CD4+T细胞。特别是,新抗原特异性T细胞之所以吸引人,是因为它们可以杀死
肿瘤细胞具有高度的特异性。一般的方法是从识别新抗原的T细胞开始。
在肿瘤内广泛表达,分离T细胞并确定其T细胞受体(TCR)序列。
然后,这些TCR可以被导入患者的T细胞,或许可以通过额外的基因工程来促进
更持久的抗肿瘤作用,并扩展为用于患者治疗的输液产品。3事实上,这是
方法最近进入临床,一项试验(NCT03970382)借鉴了NCI的发明-
由PPI牵头的CCNE U54基金的这项建议。4、5然而,仍然有一些基本的和
与推进新抗原特异性TCR工程疗法相关的技术挑战。首先,
新抗原特异性TCR的发现依赖于来自算法的指导,例如Net MHCpan4.1,以预测
抗原/MHC呈递(基于结合和其他考虑),以及产生于
主干突变,如突变的KRAS或突变的TP53,被预测为不太可能,但已有报道称
临床有效靶点。6,7,8秒,新抗原特异性的CD4+T细胞及其II类限制性新抗原,
虽然9,10在免疫治疗诱导的抗肿瘤反应中很重要,但在很大程度上仍未被开发
治疗资源,对于II类抗原/MHC结合的预测算法11,12开发得较少。三分之一
挑战在于,对患者血液中新抗原特异性T细胞的分析通常需要超过20M
外周血单核细胞(PBMC),因此并不是特别有效。在此,我们提出了三个具体目标
旨在解决这些悬而未决的问题。技术解决方案的核心是组合
设计用于高效和选择性的工程纳米颗粒(NPs)和生物分子工程结构
捕获、分析和验证躯干新抗原特异性的CD4+和CD8+T细胞群。意义重大
提供了所有3个AIM的初步数据,其中一些使用了我们工作生成的新冠肺炎患者数据
在当前的大流行期间。13,14这项工作的结果将是为最小偏见的人设计的强大的工具集
寻找抗主干肿瘤抗原的CD4+和CD8+T细胞群(独立于患者的人类白细胞抗原
单倍型),为快速验证和表征这些新抗原特异性T细胞而设计的工具包
克隆类型,以及I类和II类干新抗原和T细胞受体基因特异性的公共数据库
对这些新抗原的反应。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy.
- DOI:10.1146/annurev-cancerbio-061521-082114
- 发表时间:2023
- 期刊:
- 影响因子:7.7
- 作者:Martinov, Tijana;Greenberg, Philip D.
- 通讯作者:Greenberg, Philip D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James R. Heath其他文献
Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
- DOI:
10.1186/s13073-023-01278-0 - 发表时间:
2024-01-06 - 期刊:
- 影响因子:11.200
- 作者:
Daniela Matuozzo;Estelle Talouarn;Astrid Marchal;Peng Zhang;Jeremy Manry;Yoann Seeleuthner;Yu Zhang;Alexandre Bolze;Matthieu Chaldebas;Baptiste Milisavljevic;Adrian Gervais;Paul Bastard;Takaki Asano;Lucy Bizien;Federica Barzaghi;Hassan Abolhassani;Ahmad Abou Tayoun;Alessandro Aiuti;Ilad Alavi Darazam;Luis M. Allende;Rebeca Alonso-Arias;Andrés Augusto Arias;Gokhan Aytekin;Peter Bergman;Simone Bondesan;Yenan T. Bryceson;Ingrid G. Bustos;Oscar Cabrera-Marante;Sheila Carcel;Paola Carrera;Giorgio Casari;Khalil Chaïbi;Roger Colobran;Antonio Condino-Neto;Laura E. Covill;Ottavia M. Delmonte;Loubna El Zein;Carlos Flores;Peter K. Gregersen;Marta Gut;Filomeen Haerynck;Rabih Halwani;Selda Hancerli;Lennart Hammarström;Nevin Hatipoğlu;Adem Karbuz;Sevgi Keles;Christèle Kyheng;Rafael Leon-Lopez;Jose Luis Franco;Davood Mansouri;Javier Martinez-Picado;Ozge Metin Akcan;Isabelle Migeotte;Pierre-Emmanuel Morange;Guillaume Morelle;Andrea Martin-Nalda;Giuseppe Novelli;Antonio Novelli;Tayfun Ozcelik;Figen Palabiyik;Qiang Pan-Hammarström;Rebeca Pérez de Diego;Laura Planas-Serra;Daniel E. Pleguezuelo;Carolina Prando;Aurora Pujol;Luis Felipe Reyes;Jacques G. Rivière;Carlos Rodriguez-Gallego;Julian Rojas;Patrizia Rovere-Querini;Agatha Schlüter;Mohammad Shahrooei;Ali Sobh;Pere Soler-Palacin;Yacine Tandjaoui-Lambiotte;Imran Tipu;Cristina Tresoldi;Jesus Troya;Diederik van de Beek;Mayana Zatz;Pawel Zawadzki;Saleh Zaid Al-Muhsen;Mohammed Faraj Alosaimi;Fahad M. Alsohime;Hagit Baris-Feldman;Manish J. Butte;Stefan N. Constantinescu;Megan A. Cooper;Clifton L. Dalgard;Jacques Fellay;James R. Heath;Yu-Lung Lau;Richard P. Lifton;Tom Maniatis;Trine H. Mogensen;Horst von Bernuth;Alban Lermine;Michel Vidaud;Anne Boland;Jean-François Deleuze;Robert Nussbaum;Amanda Kahn-Kirby;France Mentre;Sarah Tubiana;Guy Gorochov;Florence Tubach;Pierre Hausfater;Isabelle Meyts;Shen-Ying Zhang;Anne Puel;Luigi D. Notarangelo;Stephanie Boisson-Dupuis;Helen C. Su;Bertrand Boisson;Emmanuelle Jouanguy;Jean-Laurent Casanova;Qian Zhang;Laurent Abel;Aurélie Cobat - 通讯作者:
Aurélie Cobat
C60's smallest cousin
C60 的最小“亲戚”
- DOI:
10.1038/31579 - 发表时间:
1998-06-25 - 期刊:
- 影响因子:48.500
- 作者:
James R. Heath - 通讯作者:
James R. Heath
Protein Catalyzed Capture (PCC) Agents for Antigen Targeting.
用于抗原靶向的蛋白质催化捕获 (PCC) 试剂。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Idso;B. Lai;Heather D Agnew;James R. Heath - 通讯作者:
James R. Heath
Planar Patch-Clamp Electrodes for Single Cell and Neural Network Studies
- DOI:
10.1016/j.bpj.2009.12.3287 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
John M. Nagarah;Daniel A. Wagenaar;James R. Heath - 通讯作者:
James R. Heath
Stereochemical engineering of a peptide macrocycle allosteric inhibitor of phospho-Akt2 controls cell penetration by fine-tuning macrocycle-cell membrane interactions
磷酸 Akt2 肽大环变构抑制剂的立体化学工程通过微调大环 - 细胞膜相互作用来控制细胞渗透
- DOI:
10.26434/chemrxiv-2021-kldh7 - 发表时间:
2021 - 期刊:
- 影响因子:5.9
- 作者:
Arundhati Nag;A. Mafi;Samir R Das;Mary Beth Yu;Belen Alvarez;W. Goddard;James R. Heath - 通讯作者:
James R. Heath
James R. Heath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James R. Heath', 18)}}的其他基金
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
- 批准号:
10708901 - 财政年份:2022
- 资助金额:
$ 52.8万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10907268 - 财政年份:2022
- 资助金额:
$ 52.8万 - 项目类别:
Spatiotemporal Tumor Analytics for Guiding Sequential Targeted-Inhibitor: Immunotherapy Combinations (ST-Analytics)
用于指导序贯靶向抑制剂的时空肿瘤分析:免疫治疗组合(ST-Analytics)
- 批准号:
10526101 - 财政年份:2022
- 资助金额:
$ 52.8万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10526103 - 财政年份:2022
- 资助金额:
$ 52.8万 - 项目类别:
PROJECT 1: TIME-Based Spatiotemporal Cancer Immunograms Predictive for Immunotherapy-Targeted Therapy Sequential Combinations
项目 1:基于时间的时空癌症免疫图预测免疫治疗靶向治疗顺序组合
- 批准号:
10708924 - 财政年份:2022
- 资助金额:
$ 52.8万 - 项目类别:
Data-driven Patient-Specific Agent Based Models of Metastatic Melanoma for Immunotherapy Response Prediction
用于免疫治疗反应预测的数据驱动的基于患者特异性药物的转移性黑色素瘤模型
- 批准号:
10831325 - 财政年份:2022
- 资助金额:
$ 52.8万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10297588 - 财政年份:2021
- 资助金额:
$ 52.8万 - 项目类别:
Nano and biomolecular engineered technologies for neoantigen-specific T cell capture and characterization
用于新抗原特异性 T 细胞捕获和表征的纳米和生物分子工程技术
- 批准号:
10489832 - 财政年份:2021
- 资助金额:
$ 52.8万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 52.8万 - 项目类别:
Continuing Grant














{{item.name}}会员




