Macrophage and Monocyte Metabolic Adaptation in Hemolysis and Sickle Cell Disease

溶血和镰状细胞病中的巨噬细胞和单核细胞代谢适应

基本信息

  • 批准号:
    10490969
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Macrophage and Monocyte Metabolic Adaptation to Hemolysis and Sickle Cell Disease PROJECT SUMMARY Hemolysis is a unifying feature of a diverse set of pathologies including inherited disorders such as sickle cell disease (SCD), infectious diseases including malaria, systemic pathologies such as sepsis, as well as drug toxicity and autoimmune disease. The release of free heme causes oxidative damage, leading to immune cell activation, endothelial damage, ischemia, and end-organ toxicity. Innate immune cells such as macrophages are specialized in heme detoxification, and while it is now evident that macrophages alter their cellular metabolism in order to carry out specific effector functions, the metabolic adaptations that allow macrophages to survive the toxic stress of heme clearance remain unknown. Preliminary data from our group reveal that in response to heme loading macrophages shift glucose metabolism toward the pentose phosphate pathway (PPP), which allows for the rapid production of NADPH and maintenance of redox homeostasis. This metabolic adaptation is dependent on the activity of heme oxygenase, and that carbon monoxide (CO) released during heme breakdown is the mediator that induces the metabolic adaptation toward the PPP. We also find that activity of the PPP is required for effective heme detoxification, and that the PPP is upregulated at the enzymatic and transcriptional level in a mouse model of SCD, while, surprisingly, PBMCs from patients with SCD, PPP enzymes are downregulated during disease exacerbation when compared with the same patient at baseline. Taken together, these data suggest a critical role for macrophage/monocyte metabolic adaptation in the response to hemolysis, and point toward manipulation of metabolism as a potential therapeutic avenue for treatment of heme-driven pathologies. This proposal tests the hypothesis that carbon monoxide released by heme breakdown shifts glucose metabolism toward the PPP and that pharmacologic manipulation of this pathway to promote the PPP promotes heme clearance and ameliorates hemolysis-induced damage. This hypothesis will be tested through the completion of the following specific aims. Specific Aim 1 is to determine the intracellular mechanism by which CO drives metabolism toward the PPP: Subaim 1A tests the hypothesis that CO inhibition of cystathionine beta synthetase (CBS) results in loss of phosphofructokinase (PFK) FB3 activity, which shunts glucose metabolism away from glycolysis and toward the PPP. Subaim 1B then examines whether pharmacologic inhibition of PFKFB3 can promote heme clearance and reduce hemolysis-induced damage in hypoxia-induced vasoocclusion. Specific Aim 2 is to examine how the current SCD treatment glutamine alters immunometabolic profile of circulating monocytes in mouse and human SCD. Subaim 2A tests in vitro and in vivo whether glutamine alters cellular metabolism to promote the PPP and ameliorate hemolysis-induced pathology. Subaim 2B integrates transcriptomic and bioenergetics analyses to characterize the immunometabolic status of PBMCs from patients with SCD, to determine how metabolism is altered at steady state, during disease exacerbation, or in response to treatment.
巨噬细胞和单核细胞对溶血和镰状细胞病的代谢适应

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Yeudall其他文献

Scott Yeudall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
  • 批准号:
    24K02286
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
  • 批准号:
    2420924
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
  • 批准号:
    10596047
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
  • 批准号:
    10742028
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Protecting Pigs From Enzootic Pneumonia: Rational Design Of Safe Attenuated Vaccines.
保护猪免受地方性肺炎:安全减毒疫苗的合理设计。
  • 批准号:
    BB/X017540/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Research Grant
A “Goldilocks” live attenuated poultry vaccine for Infectious Coryza
用于传染性鼻炎的“Goldilocks”家禽减毒活疫苗
  • 批准号:
    LP210301365
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Linkage Projects
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
  • 批准号:
    10730832
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Combating melanoma with an attenuated bacterial therapeutic
用减毒细菌疗法对抗黑色素瘤
  • 批准号:
    10659841
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Investigating Host and Viral Factors for Improved Design of Future Live Attenuated Vaccines for IBV
研究宿主和病毒因素以改进未来 IBV 减毒活疫苗的设计
  • 批准号:
    BB/V016067/1
  • 财政年份:
    2022
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Research Grant
L2M NSERC-Bioengineering attenuated Sclerotinia sclerotiorum strains as bioherbicide for cereal production and lawn management
L2M NSERC-生物工程减毒核盘菌菌株作为谷物生产和草坪管理的生物除草剂
  • 批准号:
    576545-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了