Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
基本信息
- 批准号:10491672
- 负责人:
- 金额:$ 159.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAmericanArtificial IntelligenceBiochemical PathwayBiologicalBiological MarkersBiomedical ComputingBrain imagingClinicalCollectionComputer softwareDataData AnalysesData SourcesDiseaseEnsureFDA approvedGeneticGenomicsGoalsHeartImageInformaticsInvestmentsJointsKnowledgeLeadLearningMachine LearningMedical GeneticsMethodsModelingPatternPharmaceutical PreparationsPopulation StudyPublic Health InformaticsReproducibilityResearchResearch Project GrantsSourceStructureTechnologyartificial intelligence algorithmbiobankbiomedical informaticsclinical decision supportcostdrug developmentexperimental studyfeature selectioninnovationlarge scale datamachine learning algorithmmachine learning modelmultimodalitymultiple omicsnovelnovel therapeuticsopen sourceprogramsprotein aggregationprotein misfoldinguser-friendly
项目摘要
Alzheimer's disease (AD) is a common disease that is partly due to protein misfolding and
aggregation. Research on AD is a national priority with 5.5 million Americans affected at an annual
cost of more than $250 billion and no available cure. This is despite heavy investments in the
collection of diverse clinical and biological data in experimental and population-based studies.
Artificial intelligence (AI) and machine learning have the potential to reveal patterns in clinical and
multi-source large-scale Alzheimer’s data that have not been found using standard approaches.
We propose here a comprehensive biomedical computing and health informatics research project
to develop and apply cutting-edge AI algorithms and biomedical software for the analysis of large-
scale AD data. At the heart of this proposed informatics program is the PennAI method and
software for automating machine learning through an AI algorithm that can learn from prior
analyses. This approach takes the guesswork out of picking the right machine learning algorithms
and parameter settings thus making this computing technology accessible to everyone.
Specifically, we will develop three novel informatics methods to tailor PennAI to the analysis of
AD data. First, we will develop a Multi-Modal Interaction (M2I) feature selection algorithm for
identifying genetic interactions that are predictive of AD (AIM 1). Second, we will develop a
Knowledge-driven Multi-omics Integration (KMI) algorithm for combining omics features for AI
analysis of AD (AIM 2). Third, we will develop a Multidimensional Brain Imaging Omics (MBIO)
integration framework for the joint analysis of multi-source large-scale data for predicting AD.
Finally, we will integrate all three biomedical informatics methods into our open-source PennAI
software package and apply it to two large population-based studies of AD. We expect PennAI
will reveal new biomarkers for AD that will open the door for better treatments and clinical decision
support.
阿尔茨海默病(AD)是一种常见的疾病,其部分原因是蛋白质错误折叠,
聚合来对AD的研究是国家的优先事项,每年有550万美国人受到影响。
花费超过2500亿美元,而且没有可用的治疗方法。这是尽管大量投资,
在实验和基于人群的研究中收集各种临床和生物学数据。
人工智能(AI)和机器学习有可能揭示临床和医学领域的模式。
使用标准方法尚未发现的多源大规模阿尔茨海默氏症数据。
我们在这里提出了一个全面的生物医学计算和健康信息学研究项目
开发和应用尖端的人工智能算法和生物医学软件,用于分析大型
规模AD数据。这个拟议的信息学计划的核心是PennAI方法,
用于通过AI算法自动化机器学习的软件,该算法可以从先前的
分析。这种方法消除了选择正确机器学习算法的猜测
和参数设置,从而使这种计算技术对每个人都是可访问的。
具体来说,我们将开发三种新的信息学方法来定制PennAI,以分析
AD数据。首先,我们将开发多模式交互(M2 I)特征选择算法,
识别预测AD的遗传相互作用(AIM 1)。第二,我们会发展一个
知识驱动的多组学集成(KMI)算法,用于组合AI的组学特征
AD分析(AIM 2)。第三,我们将开发多维脑成像组学(MBIO)
多源大规模数据联合分析预测AD的集成框架。
最后,我们将把这三种生物医学信息学方法整合到我们的开源PennAI中。
软件包,并将其应用到两个大的人口为基础的研究AD。我们期待彭奈
将揭示AD的新生物标志物,为更好的治疗和临床决策打开大门
支持.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason H. Moore其他文献
ChatGPT and large language models in academia: opportunities and challenges
- DOI:
10.1186/s13040-023-00339-9 - 发表时间:
2023-07-13 - 期刊:
- 影响因子:6.100
- 作者:
Jesse G. Meyer;Ryan J. Urbanowicz;Patrick C. N. Martin;Karen O’Connor;Ruowang Li;Pei-Chen Peng;Tiffani J. Bright;Nicholas Tatonetti;Kyoung Jae Won;Graciela Gonzalez-Hernandez;Jason H. Moore - 通讯作者:
Jason H. Moore
A disease-specific language model for variant pathogenicity in cardiac and regulatory genomics
用于心脏和调控基因组学中变异致病性的疾病特异性语言模型
- DOI:
10.1038/s42256-025-01016-8 - 发表时间:
2025-03-24 - 期刊:
- 影响因子:23.900
- 作者:
Huixin Zhan;Jason H. Moore;Zijun Zhang - 通讯作者:
Zijun Zhang
Erratum to: Why epistasis is important for tackling complex human disease genetics
- DOI:
10.1186/s13073-015-0205-8 - 发表时间:
2015-09-07 - 期刊:
- 影响因子:11.200
- 作者:
Trudy F. C. Mackay;Jason H. Moore - 通讯作者:
Jason H. Moore
Genetic Programming Theory and Practice IX
遗传编程理论与实践九
- DOI:
10.1007/978-1-4614-1770-5 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
R. Riolo;E. Vladislavleva;Jason H. Moore - 通讯作者:
Jason H. Moore
Cluster Analysis reveals Socioeconomic Disparities among Elective Spine Surgery Patients.
聚类分析揭示了选择性脊柱手术患者的社会经济差异。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alena Orlenko;P. Freda;Attri Ghosh;Hyunjun Choi;Nicholas Matsumoto;T. Bright;Corey T. Walker;Tayo Obafemi;Jason H. Moore - 通讯作者:
Jason H. Moore
Jason H. Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason H. Moore', 18)}}的其他基金
Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
- 批准号:
10616262 - 财政年份:2022
- 资助金额:
$ 159.26万 - 项目类别:
Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
- 批准号:
10654872 - 财政年份:2022
- 资助金额:
$ 159.26万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10582512 - 财政年份:2021
- 资助金额:
$ 159.26万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10907083 - 财政年份:2021
- 资助金额:
$ 159.26万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10366006 - 财政年份:2020
- 资助金额:
$ 159.26万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10206271 - 财政年份:2020
- 资助金额:
$ 159.26万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10065859 - 财政年份:2020
- 资助金额:
$ 159.26万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 159.26万 - 项目类别:
Continuing Grant