Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
基本信息
- 批准号:10582512
- 负责人:
- 金额:$ 160.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Alzheimer's disease (AD) is a common disease that is partly due to protein misfolding and
aggregation. Research on AD is a national priority with 5.5 million Americans affected at an annual
cost of more than $250 billion and no available cure. This is despite heavy investments in the
collection of diverse clinical and biological data in experimental and population-based studies.
Artificial intelligence (AI) and machine learning have the potential to reveal patterns in clinical and
multi-source large-scale Alzheimer’s data that have not been found using standard approaches.
We propose here a comprehensive biomedical computing and health informatics research project
to develop and apply cutting-edge AI algorithms and biomedical software for the analysis of large-
scale AD data. At the heart of this proposed informatics program is the PennAI method and
software for automating machine learning through an AI algorithm that can learn from prior
analyses. This approach takes the guesswork out of picking the right machine learning algorithms
and parameter settings thus making this computing technology accessible to everyone.
Specifically, we will develop three novel informatics methods to tailor PennAI to the analysis of
AD data. First, we will develop a Multi-Modal Interaction (M2I) feature selection algorithm for
identifying genetic interactions that are predictive of AD (AIM 1). Second, we will develop a
Knowledge-driven Multi-omics Integration (KMI) algorithm for combining omics features for AI
analysis of AD (AIM 2). Third, we will develop a Multidimensional Brain Imaging Omics (MBIO)
integration framework for the joint analysis of multi-source large-scale data for predicting AD.
Finally, we will integrate all three biomedical informatics methods into our open-source PennAI
software package and apply it to two large population-based studies of AD. We expect PennAI
will reveal new biomarkers for AD that will open the door for better treatments and clinical decision
support.
阿尔茨海默病(AD)是一种常见的疾病,其部分原因是蛋白质错误折叠,
聚合来对AD的研究是国家的优先事项,每年有550万美国人受到影响。
花费超过2500亿美元,而且没有可用的治疗方法。这是尽管大量投资,
在实验和基于人群的研究中收集各种临床和生物学数据。
人工智能(AI)和机器学习有可能揭示临床和医学领域的模式。
使用标准方法尚未发现的多源大规模阿尔茨海默氏症数据。
我们在这里提出了一个全面的生物医学计算和健康信息学研究项目
开发和应用尖端的人工智能算法和生物医学软件,用于分析大型
规模AD数据。这个拟议的信息学计划的核心是PennAI方法,
用于通过AI算法自动化机器学习的软件,该算法可以从先前的
分析。这种方法消除了选择正确机器学习算法的猜测
和参数设置,从而使这种计算技术对每个人都是可访问的。
具体来说,我们将开发三种新的信息学方法来定制PennAI,以分析
AD数据。首先,我们将开发多模式交互(M2 I)特征选择算法,
识别预测AD的遗传相互作用(AIM 1)。第二,我们会发展一个
知识驱动的多组学集成(KMI)算法,用于组合AI的组学特征
AD分析(AIM 2)。第三,我们将开发多维脑成像组学(MBIO)
多源大规模数据联合分析预测AD的集成框架。
最后,我们将把这三种生物医学信息学方法整合到我们的开源PennAI中。
软件包,并将其应用到两个大的人口为基础的研究AD。我们期待彭奈
将揭示AD的新生物标志物,为更好的治疗和临床决策打开大门
支持.
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knowledge graph aids comprehensive explanation of drug and chemical toxicity.
- DOI:10.1002/psp4.12975
- 发表时间:2023-08
- 期刊:
- 影响因子:3.5
- 作者:Hao, Yun;Romano, Joseph D. D.;Moore, Jason H. H.
- 通讯作者:Moore, Jason H. H.
Knowledge-guided deep learning models of drug toxicity improve interpretation.
- DOI:10.1016/j.patter.2022.100565
- 发表时间:2022-09-09
- 期刊:
- 影响因子:6.5
- 作者:Hao, Yun;Romano, Joseph D.;Moore, Jason H.
- 通讯作者:Moore, Jason H.
Automating Predictive Toxicology Using ComptoxAI.
- DOI:10.1021/acs.chemrestox.2c00074
- 发表时间:2022-08-15
- 期刊:
- 影响因子:4.1
- 作者:Romano, Joseph D.;Hao, Yun;Moore, Jason H.;Penning, Trevor M.
- 通讯作者:Penning, Trevor M.
SynTwin: A graph-based approach for predicting clinical outcomes using digital twins derived from synthetic patients
- DOI:10.1142/9789811286421_0008
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Jason H Moore;Xi Li;Jui-Hsuan Chang;Nicholas P. Tatonetti;Dan Theodorescu;Yong Chen;F. Asselbergs;Mythreye Venkatesan;Zhiping Wang
- 通讯作者:Jason H Moore;Xi Li;Jui-Hsuan Chang;Nicholas P. Tatonetti;Dan Theodorescu;Yong Chen;F. Asselbergs;Mythreye Venkatesan;Zhiping Wang
Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers.
- DOI:10.1126/sciadv.abl4747
- 发表时间:2022-11-25
- 期刊:
- 影响因子:13.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason H. Moore其他文献
A disease-specific language model for variant pathogenicity in cardiac and regulatory genomics
用于心脏和调控基因组学中变异致病性的疾病特异性语言模型
- DOI:
10.1038/s42256-025-01016-8 - 发表时间:
2025-03-24 - 期刊:
- 影响因子:23.900
- 作者:
Huixin Zhan;Jason H. Moore;Zijun Zhang - 通讯作者:
Zijun Zhang
ChatGPT and large language models in academia: opportunities and challenges
- DOI:
10.1186/s13040-023-00339-9 - 发表时间:
2023-07-13 - 期刊:
- 影响因子:6.100
- 作者:
Jesse G. Meyer;Ryan J. Urbanowicz;Patrick C. N. Martin;Karen O’Connor;Ruowang Li;Pei-Chen Peng;Tiffani J. Bright;Nicholas Tatonetti;Kyoung Jae Won;Graciela Gonzalez-Hernandez;Jason H. Moore - 通讯作者:
Jason H. Moore
Erratum to: Why epistasis is important for tackling complex human disease genetics
- DOI:
10.1186/s13073-015-0205-8 - 发表时间:
2015-09-07 - 期刊:
- 影响因子:11.200
- 作者:
Trudy F. C. Mackay;Jason H. Moore - 通讯作者:
Jason H. Moore
Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies
组学研究中共享和格式化元数据的感知和技术障碍
- DOI:
10.48550/arxiv.2401.02965 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yu;Michael I. Love;Cynthia Flaire Ronkowski;Dhrithi Deshpande;L. Schriml;Annie Wong;B. Mons;Russell Corbett;Christopher I Hunter;Jason H. Moore;Lana X. Garmire;T.B.K. Reddy;Winston Hide;A. Butte;Mark D. Robinson;S. Mangul - 通讯作者:
S. Mangul
Cluster Analysis reveals Socioeconomic Disparities among Elective Spine Surgery Patients.
聚类分析揭示了选择性脊柱手术患者的社会经济差异。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alena Orlenko;P. Freda;Attri Ghosh;Hyunjun Choi;Nicholas Matsumoto;T. Bright;Corey T. Walker;Tayo Obafemi;Jason H. Moore - 通讯作者:
Jason H. Moore
Jason H. Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason H. Moore', 18)}}的其他基金
Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
- 批准号:
10616262 - 财政年份:2022
- 资助金额:
$ 160.94万 - 项目类别:
Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
- 批准号:
10654872 - 财政年份:2022
- 资助金额:
$ 160.94万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10491672 - 财政年份:2021
- 资助金额:
$ 160.94万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10907083 - 财政年份:2021
- 资助金额:
$ 160.94万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10366006 - 财政年份:2020
- 资助金额:
$ 160.94万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10206271 - 财政年份:2020
- 资助金额:
$ 160.94万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10065859 - 财政年份:2020
- 资助金额:
$ 160.94万 - 项目类别:
相似海外基金
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
- 批准号:
10559270 - 财政年份:2023
- 资助金额:
$ 160.94万 - 项目类别:
Development and application of robust estimation and artificial intelligence strategies on noisy and unreliable data
针对噪声和不可靠数据的鲁棒估计和人工智能策略的开发和应用
- 批准号:
566259-2021 - 财政年份:2022
- 资助金额:
$ 160.94万 - 项目类别:
Alliance Grants
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10491672 - 财政年份:2021
- 资助金额:
$ 160.94万 - 项目类别:
Building the foundations for artificial intelligence providing treatment strategies of hemiparetic gait
为人工智能奠定基础,提供偏瘫步态的治疗策略
- 批准号:
21H03311 - 财政年份:2021
- 资助金额:
$ 160.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and application of robust estimation and artificial intelligence strategies on noisy and unreliable data
针对噪声和不可靠数据的鲁棒估计和人工智能策略的开发和应用
- 批准号:
566259-2021 - 财政年份:2021
- 资助金额:
$ 160.94万 - 项目类别:
Alliance Grants
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10907083 - 财政年份:2021
- 资助金额:
$ 160.94万 - 项目类别:
Development of an artificial intelligence system to identify treatment strategies in long-term care services
开发人工智能系统来确定长期护理服务的治疗策略
- 批准号:
20K21775 - 财政年份:2020
- 资助金额:
$ 160.94万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Artificial Intelligence, Price Setting Strategies and Antitrust Law: Towards a Regulatory Framework
人工智能、定价策略和反垄断法:迈向监管框架
- 批准号:
18K01300 - 财政年份:2018
- 资助金额:
$ 160.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The combination of direct-methods and artificial-intelligence strategies for solving protein crystal structures
直接法和人工智能策略相结合解决蛋白质晶体结构
- 批准号:
2532-1996 - 财政年份:1999
- 资助金额:
$ 160.94万 - 项目类别:
Discovery Grants Program - Individual
The combination of direct-methods and artificial-intelligence strategies for solving protein crystal structures
直接法和人工智能策略相结合解决蛋白质晶体结构
- 批准号:
2532-1996 - 财政年份:1998
- 资助金额:
$ 160.94万 - 项目类别:
Discovery Grants Program - Individual