Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
基本信息
- 批准号:10654872
- 负责人:
- 金额:$ 34.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBioinformaticsBiologyCharacteristicsClinVarCommunity MedicineComputational algorithmComputer softwareConfusionDNADataDatabasesDiseaseDisease modelEtiologyFeedbackFrequenciesGeneticGenetic studyGenomeGenomic medicineGenomicsGenotypeGoalsHealthHumanIndividualInformaticsInformation ResourcesKnowledgeMachine LearningMeasuresMethodologyMethodsModelingOnline SystemsPatientsPatternPharmaceutical PreparationsPopulationPopulation AnalysisPopulation StudyProcessPubMedPythonsResearch PersonnelRiskRisk FactorsSourceTechnologyTimeValidationdata preservationdesigndisorder riskexperimental studygenetic makeupgenetic variantgenome wide association studyhuman diseaseindividual patientknowledge integrationmachine learning algorithmmachine learning modelmodels and simulationnovelopen dataopen sourcephenotypic dataprecision medicinepreventsimulationstatisticstherapeutic targetvirtualvirtual experimentsvirtual intervention
项目摘要
The promise of precision medicine is to edit a patient’s DNA and/or administer therapeutics targeting etiologic
molecules that prevent or reverse the disease process using a tailored design. All of this happens at the level
of the individual and requires precision knowledge of that patient’s biology. In stark contrast, much of the
knowledge we possess about genomic risk factors comes from statistical measures of association from human
populations. The conceptual and practical disconnect between the populations we study and the individuals we
want to treat is a major source of confusion about how to move forward in an era driven by genome
technology. The primary goal of this proposal is to develop novel informatics methodology and software to
facilitate precision medicine by connecting population and individual genomic phenomena. We propose here a
Virtual Genomic Medicine (VGMed) workbench where clinicians can carry out thought experiments about the
treatment of individual patients using models of disease risk derived from population-level studies. This will be
accomplished by first developing a novel Genomics-guided Automated Machine Learning (GAML) algorithm for
deriving risk models from real data that is accessible to clinicians (AIM 1). We will then develop a novel
simulation approach that is able to generate artificial data that preserves the distribution of genetic effects
observed in the real data while maintaining other characteristics such as genotype frequencies (AIM 2). This
will generate open data allowing anyone to perform virtual interventions on patients derived from a population-
level risk distribution. The workbench will allow editing of individual genotypes and simulate the administration
of drugs by editing machine learning parameters in the simulation model (AIM 3). The change in risk and
disease status for the specific patient will be tracked in real time. Finally, we provide a feature in the workbench
that will allow the clinician to generate specific hypotheses about individual genetic variants that can then be
validated using integrated knowledge sources that include databases such as PubMed and ClinVar thus giving
the user immediate feedback (AIM 4). All methods and software will be provided as open-source (AIM 5).
精准医学的承诺是编辑患者的DNA和/或针对病因学给予治疗。
使用定制的设计来预防或逆转疾病过程的分子。所有这些都发生在
并且需要对患者的生物学有精确的了解。与此形成鲜明对比的是,
我们所掌握的关于基因组风险因素的知识来自于人类基因组相关性的统计测量,
人口。我们所研究的人群和我们所研究的个体之间在概念上和实践上的脱节,
在一个由基因组驱动的时代,
技术.该提案的主要目标是开发新的信息学方法和软件,
通过连接群体和个体基因组现象来促进精准医学。我们在此建议,
虚拟基因组医学(VGMed)工作台,临床医生可以在其中进行关于
使用来自人群水平研究的疾病风险模型治疗个体患者。这将是
首先开发一种新的基因组学指导的自动机器学习(GAML)算法,
从临床医生可访问的真实的数据导出风险模型(AIM 1)。然后我们会写一部小说
一种模拟方法,能够生成保留遗传效应分布的人工数据
观察到的真实的数据,同时保持其他特征,如基因型频率(AIM 2)。这
将生成开放数据,允许任何人对来自人群的患者进行虚拟干预-
水平风险分布。工作台将允许编辑个体基因型并模拟给药
通过编辑模拟模型中的机器学习参数来识别药物(AIM 3)。风险的变化,
将真实的跟踪特定患者的疾病状态。最后,我们在工作台中提供了一个特性
这将允许临床医生产生关于个体遗传变异的特定假设,
使用包括PubMed和ClinVar等数据库在内的综合知识源进行验证,
用户即时反馈(AIM 4)。所有方法和软件都将作为开源(AIM 5)提供。
项目成果
期刊论文数量(97)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics.
- DOI:10.1186/1752-0509-8-12
- 发表时间:2014-02-05
- 期刊:
- 影响因子:0
- 作者:Penrod NM;Moore JH
- 通讯作者:Moore JH
Eleven quick tips for architecting biomedical informatics workflows with cloud computing.
- DOI:10.1371/journal.pcbi.1005994
- 发表时间:2018-03
- 期刊:
- 影响因子:4.3
- 作者:Cole BS;Moore JH
- 通讯作者:Moore JH
STatistical Inference Relief (STIR) feature selection.
统计推断浮雕(搅拌)特征选择。
- DOI:10.1093/bioinformatics/bty788
- 发表时间:2019-04-15
- 期刊:
- 影响因子:0
- 作者:Le TT;Urbanowicz RJ;Moore JH;McKinney BA
- 通讯作者:McKinney BA
Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.
- DOI:10.1186/1756-0381-5-9
- 发表时间:2012-07-28
- 期刊:
- 影响因子:4.5
- 作者:Kim NC;Andrews PC;Asselbergs FW;Frost HR;Williams SM;Harris BT;Read C;Askland KD;Moore JH
- 通讯作者:Moore JH
ViSEN: methodology and software for visualization of statistical epistasis networks.
- DOI:10.1002/gepi.21718
- 发表时间:2013-04
- 期刊:
- 影响因子:2.1
- 作者:Hu, Ting;Chen, Yuanzhu;Kiralis, Jeff W.;Moore, Jason H.
- 通讯作者:Moore, Jason H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason H. Moore其他文献
ChatGPT and large language models in academia: opportunities and challenges
- DOI:
10.1186/s13040-023-00339-9 - 发表时间:
2023-07-13 - 期刊:
- 影响因子:6.100
- 作者:
Jesse G. Meyer;Ryan J. Urbanowicz;Patrick C. N. Martin;Karen O’Connor;Ruowang Li;Pei-Chen Peng;Tiffani J. Bright;Nicholas Tatonetti;Kyoung Jae Won;Graciela Gonzalez-Hernandez;Jason H. Moore - 通讯作者:
Jason H. Moore
A disease-specific language model for variant pathogenicity in cardiac and regulatory genomics
用于心脏和调控基因组学中变异致病性的疾病特异性语言模型
- DOI:
10.1038/s42256-025-01016-8 - 发表时间:
2025-03-24 - 期刊:
- 影响因子:23.900
- 作者:
Huixin Zhan;Jason H. Moore;Zijun Zhang - 通讯作者:
Zijun Zhang
Erratum to: Why epistasis is important for tackling complex human disease genetics
- DOI:
10.1186/s13073-015-0205-8 - 发表时间:
2015-09-07 - 期刊:
- 影响因子:11.200
- 作者:
Trudy F. C. Mackay;Jason H. Moore - 通讯作者:
Jason H. Moore
Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies
组学研究中共享和格式化元数据的感知和技术障碍
- DOI:
10.48550/arxiv.2401.02965 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yu;Michael I. Love;Cynthia Flaire Ronkowski;Dhrithi Deshpande;L. Schriml;Annie Wong;B. Mons;Russell Corbett;Christopher I Hunter;Jason H. Moore;Lana X. Garmire;T.B.K. Reddy;Winston Hide;A. Butte;Mark D. Robinson;S. Mangul - 通讯作者:
S. Mangul
Cluster Analysis reveals Socioeconomic Disparities among Elective Spine Surgery Patients.
聚类分析揭示了选择性脊柱手术患者的社会经济差异。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alena Orlenko;P. Freda;Attri Ghosh;Hyunjun Choi;Nicholas Matsumoto;T. Bright;Corey T. Walker;Tayo Obafemi;Jason H. Moore - 通讯作者:
Jason H. Moore
Jason H. Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason H. Moore', 18)}}的其他基金
Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
- 批准号:
10616262 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10582512 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10491672 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
- 批准号:
10907083 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10366006 - 财政年份:2020
- 资助金额:
$ 34.89万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10206271 - 财政年份:2020
- 资助金额:
$ 34.89万 - 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
- 批准号:
10065859 - 财政年份:2020
- 资助金额:
$ 34.89万 - 项目类别:
相似海外基金
Predoctoral Training in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训
- 批准号:
10715126 - 财政年份:2023
- 资助金额:
$ 34.89万 - 项目类别:
UCLA Pediatric Research Education Program in Bioinformatics, Computational Biology, and Omics
加州大学洛杉矶分校生物信息学、计算生物学和组学儿科研究教育项目
- 批准号:
10629061 - 财政年份:2023
- 资助金额:
$ 34.89万 - 项目类别:
Using Computational Intelligence for Bioinformatics and Computational Biology
将计算智能用于生物信息学和计算生物学
- 批准号:
575765-2022 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Graduate Training Program in Computational Biology, Bioinformatics and Biomedical Data Science (CBB)
计算生物学、生物信息学和生物医学数据科学研究生培训项目(CBB)
- 批准号:
10654859 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Conference: Conference on Bioinformatics, Computational Biology, and Health Informatics 2022
会议:2022 年生物信息学、计算生物学和健康信息学会议
- 批准号:
2233805 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Standard Grant
Systems Biology of Early Atopy (SUNBEAM) Analysis and Bioinformatics Center
早期特应性系统生物学(SUNBEAM)分析和生物信息学中心
- 批准号:
10573523 - 财政年份:2022
- 资助金额:
$ 34.89万 - 项目类别:
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10459538 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10653908 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:
MCA: Application of Quantum Computing in Bioinformatics and Computational Biology
MCA:量子计算在生物信息学和计算生物学中的应用
- 批准号:
2120949 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:
Standard Grant
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
- 批准号:
10641034 - 财政年份:2021
- 资助金额:
$ 34.89万 - 项目类别:














{{item.name}}会员




