SCH: Harnessing Tensor Information to Improve EHR Data Quality for Accurate Data-driven Screening of Diabetic Retinopathy with Routine Lab Results

SCH:利用张量信息提高 EHR 数据质量,通过常规实验室结果进行数据驱动的糖尿病视网膜病变的准确筛查

基本信息

  • 批准号:
    10491247
  • 负责人:
  • 金额:
    $ 28.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract Despite the high prevalence of diabetic retinopathy (DR), the recommended annual ophthalmic exam for diabetic patients has a very low compliance rate, only around 43%. Many patients do not seek proper medical attention because DR is asymptomatic in the early stage, and thus they miss the most effective period to halt DR progression and prevent vision loss. Moreover, ophthalmic equipment for DR exams is predominantly limited to urban areas, restricting access by patients in rural communities with limited incomes. All of these issues create an urgent need for cost-effective, widely-available approaches that enable early detection of DR. Our long-term goal is to develop a non-image-based, artificial intelligence (AI) tool for primary care physicians to assess patients' risk for DR using comorbidity data and routine lab results, which are widely available. It will help physicians recommend ophthalmic exams and individual screening frequency for at-risk patients confidently. The accuracy of our approach is close to the fundus-image-based DR detection tools, and it is much easier to use and more cost-effective. Preliminary studies demonstrated the feasibility of detecting DR with 90% accuracy. Our approach is promising to increase the compliance rate of the recommended ophthalmic exams among asymptotic patients, break the barrier to ubiquitous diabetic eye care in rural communities, and save thousands of people from blindness. If successful, our approach has the potential to transform future DR care from reactive to proactive. It will identify the causative and clinically modifiable factors of DR. This will lead to a proactive DR prevention and management tool to reduce avoidable DR and defray healthcare costs. As the next step in pursuing our long-term goal, we will develop predictive models for DR and extract training data from Cerner Health Facts, a comprehensive, relational database of real-world, de-identified, HIPAA- compliant patient data. However, similar to other electronic-health-record (EHR) databases, its quality suffers from missing values, imbalanced and unlabeled data. In addition, although EHR data are multi-dimensional, due to technical challenges, they are often examined in two-view features (either longitudinal or cross-sectional). Thus the high order statistics (correlation information) are not well utilized in healthcare analytics. Tensor information is important to optimize medical decision making and provides a unique angle to address the problems of missing, imbalanced, or unlabeled data. The progression of a disease or the outcome of treatment not only depends on the patient's current health conditions, but also his or her medical history. To realize the full potential of EHR data, this project will study novel imputation, augmentation, classification, and machine learning techniques by simultaneously handling the longitudinal information. The methodology developed from this study will help improve the quality of EHR data and the accuracy of the predictive models for a wide range of diseases. Project Summary/Abstract Page 6 Contact PD/PI: Liu, Tieming Narratives Although diabetic retinopathy (DR) is the leading cause of blindness among American adults, many diabetic patients do not comply with the recommended ophthalmic exams because DR is asymptomatic in the early stages, and thus patients miss the most effective period to halt DR progression and prevent vision loss. To improve the compliance rate of the recommended ophthalmic exams and detect DR early, our long-term goal is to develop a cost-effective, non- image based, artificial intelligence (AI) tool for primary care physicians to assess patients’ risk for DR using routine lab results, and recommend ophthalmic exams and personalized screening frequency for at-risk patients confidently. As the next step in pursuing this goal, this project aims to develop advanced machine learning algorithms to realize the full potential of electronic-health- record (EHR) data by harnessing tensor information to improve the quality of EHR data and prediction accuracy.
项目总结/摘要 尽管糖尿病视网膜病变(DR)的患病率很高,但糖尿病患者推荐的年度眼科检查 患者的依从率很低,只有43%左右。许多病人没有寻求适当的医疗照顾 由于DR在早期阶段无症状,因此他们错过了阻止DR的最有效时期 预防视力下降。此外,用于DR检查的眼科设备主要限于 城市地区,限制了收入有限的农村社区患者的就医。所有这些问题都会造成 迫切需要具有成本效益的,广泛可用的方法,使早期发现DR。 我们的长期目标是为初级保健医生开发一种非基于图像的人工智能(AI)工具, 使用可广泛获得的合并症数据和常规实验室结果评估患者的DR风险。它将帮助 医生自信地推荐眼科检查和对高危患者的个体筛查频率。 我们的方法的准确性接近于基于眼底图像的DR检测工具,并且更容易 使用和更具成本效益。初步研究证明了以90%的准确度检测DR的可行性。 我们的方法有望提高推荐眼科检查的依从率, 渐进的患者,打破农村社区无处不在的糖尿病眼科护理的障碍,并挽救数千人的生命。 从失明的人。如果成功,我们的方法有可能将未来的DR护理从反应性 积极主动。它将确定DR的病因和临床可改变的因素。这将导致积极的DR 预防和管理工具,以减少可避免的DR并支付医疗保健成本。 作为追求长期目标的下一步,我们将开发用于DR和提取训练的预测模型 来自Cerner Health Facts的数据,这是一个全面的真实世界的关系数据库,去识别,HIPAA- 符合要求的患者数据。然而,与其他电子健康记录(EHR)数据库类似,其质量受到影响 缺失值、不平衡和未标记的数据。此外,虽然EHR数据是多维的,但由于 对于技术挑战,它们通常在双视图特征(纵向或横截面)中被检查。 因此,高阶统计量(相关性信息)在医疗保健分析中没有得到很好的利用。 张量信息对于优化医疗决策非常重要,并提供了一个独特的角度来解决 数据缺失、不平衡或未标记的问题。疾病的进展或治疗的结果 不仅取决于患者当前的健康状况,还取决于他或她的病史。充分实现 EHR数据的潜力,该项目将研究新的插补,增强,分类和机器学习 技术,同时处理纵向信息。从这项研究中发展出来的方法 这将有助于提高EHR数据的质量和各种疾病预测模型的准确性。 项目摘要/摘要第6页 联系PD/PI:Liu,Tieming 叙述 虽然糖尿病视网膜病变(DR)是美国成年人失明的主要原因, 许多糖尿病患者不遵守推荐的眼科检查, 在早期阶段无症状,因此患者错过了阻止DR的最有效时期 预防视力下降。提高建议的遵守率, 眼科检查和早期发现DR,我们的长期目标是开发一种具有成本效益的, 基于图像的人工智能(AI)工具,用于初级保健医生评估患者的 DR使用常规实验室结果,并推荐眼科检查和个性化筛查 对高危患者的治疗频率有信心。作为实现这一目标的下一步,该项目旨在 开发先进的机器学习算法,以实现电子健康的全部潜力, 通过利用张量信息来提高EHR数据的质量, 预测精度

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tieming Liu其他文献

Tieming Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tieming Liu', 18)}}的其他基金

SCH: Harnessing Tensor Information to Improve EHR Data Quality for Accurate Data-driven Screening of Diabetic Retinopathy with Routine Lab Results
SCH:利用张量信息提高 EHR 数据质量,通过常规实验室结果进行数据驱动的糖尿病视网膜病变的准确筛查
  • 批准号:
    10436577
  • 财政年份:
    2021
  • 资助金额:
    $ 28.95万
  • 项目类别:
NOT-OD-23-070: Empowering Cloud Computing for Non-image-based Diabetic Retinopathy Screening by Designing an EHR-oriented Incremental Learning Framework
NOT-OD-23-070:通过设计面向 EHR 的增量学习框架,为非基于图像的糖尿病视网膜病变筛查提供云计算支持
  • 批准号:
    10827780
  • 财政年份:
    2021
  • 资助金额:
    $ 28.95万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了