Mechanisms and Functions of Iron-Sulfur Helicases in DNA repair
铁硫解旋酶在 DNA 修复中的机制和功能
基本信息
- 批准号:10493087
- 负责人:
- 金额:$ 29.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:2&apos-DeoxythymidineATP HydrolysisAmino Acid SequenceBinding SitesBiochemicalBiological AssayBiological ModelsBypassCell physiologyCellsCellular AssayChimeric ProteinsComplexDNADNA BindingDNA DamageDNA Polymerase IIIDNA RepairDNA Repair EnzymesDNA Repair PathwayDNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseDiseaseDissociationElementsEnvironmentEnzymesEscherichia coliFamilyFamily memberGenesGeneticGenetic DiseasesGenome StabilityGenomic DNAGenomic InstabilityGoalsHealthHereditary DiseaseHoloenzymesHumanIn VitroIronKineticsLaboratoriesLesionLinkMalignant NeoplasmsMeasuresModelingMolecularMutagenesisMutationOxygenPathologyPathway interactionsPlayPredispositionProteinsReagentRoleSingle-Stranded DNASiteStructureSulfurTestingWaterWorkY proteincitrate carrierds-DNAexperimental studyhelicasein vivomembernovelpolypeptidepreferencepreventprotein complexprotein protein interactionrepairedreplicasestoichiometry
项目摘要
PROJECT SUMMARY
DNA damage cannot be prevented because elements in a normal cellular environment including water and
oxygen contribute to damage. Therefore, DNA repair pathways are essential for maintaining genomic stability
and preventing diseases associated with DNA damage-induced mutagenesis. Even with functional DNA repair
pathways, some DNA damage will inevitably escape repair and block DNA replication when encountered by the
replisome. Cells have specialized pathways to bypass or repair DNA damage that blocks replication to allow
replication to proceed. DNA helicases are among the enzymes essential for DNA repair, and these enzymes act
both during and outside of DNA replication. The Rad3/XPD family of iron-sulfur (Fe-S)-containing DNA helicases
plays an important role in DNA repair and maintaining genome stability. There are four family members in
humans, XPD, FANCJ (a.k.a. BRIP1), DDX11 (a.k.a. ChlR1), and RTEL1, that are crucially important for human
health as evidenced by diseases associated with mutations in each of the genes. Genetic disorders linked to
mutations in Rad3/XPD family helicases are typically associated with genome instability, a predisposition to
cancer, and a number of other pathologies. This proposal will define biochemical and molecular mechanisms for
a newly discovered member of the Rad3/XPD helicase family in Escherichia coli, YoaA, that plays a role in
repairing DNA damage during DNA replication. Our collaborators in the Lovett laboratory use 3’-azido-
3’deoxythymidine (AZT) as a reagent to block DNA replication in E. coli, and they identified two genes, yoaA and
holC, that work together to give cells tolerance to AZT. Protein sequence predicts, and our preliminary results
confirm, that the first gene, yoaA, encodes an Fe-S helicase. The second gene, holC, encodes the c subunit of
DNA polymerase III holoenzyme (pol III HE) implicating the E. coli replicase in repair of AZT lesions. However,
our preliminary results have uncovered a novel function for c as a subunit of the YoaA helicase, and we propose
that c functions with the YoaA helicase rather than pol III HE in a pathway that repairs AZT lesions. The main
premise of this proposal is that YoaA and c constitute a DNA helicase that is involved in the repair of
damaged 3’ ends at stalled replication forks. Our aims are to: 1) characterize the YoaA•c protein, 2)
characterize the helicase and substrate preferences for YoaA•c, and 3) define functional interactions between
YoaA and c in vitro and develop a key reagent to investigate these functional interactions in vivo. This proposal
will provide the first biochemical characterization of the YoaA•c helicase, a member of the Rad3/XPD family of
helicases which play critical roles in human health by maintaining genome stability.
项目概要
DNA 损伤是无法避免的,因为正常细胞环境中的元素包括水和
氧气会造成损害。因此,DNA修复途径对于维持基因组稳定性至关重要
以及预防与 DNA 损伤诱导突变相关的疾病。即使有功能性 DNA 修复
途径中,一些 DNA 损伤在遇到 DNA 损伤时将不可避免地无法修复并阻止 DNA 复制。
复制体。细胞有专门的途径来绕过或修复 DNA 损伤,从而阻止复制,从而允许
复制继续进行。 DNA 解旋酶是 DNA 修复所必需的酶之一,这些酶的作用
DNA复制期间和之外。含铁硫 (Fe-S) 的 DNA 解旋酶 Rad3/XPD 家族
在DNA修复和维持基因组稳定性中发挥着重要作用。家里有四位家庭成员
人类、XPD、FANCJ(又名 BRIP1)、DDX11(又名 ChlR1)和 RTEL1,这些对人类至关重要
与每个基因突变相关的疾病证明了健康。与以下因素相关的遗传性疾病
Rad3/XPD 家族解旋酶的突变通常与基因组不稳定有关,这是一种
癌症和许多其他病症。该提案将定义生物化学和分子机制
大肠杆菌中新发现的 Rad3/XPD 解旋酶家族成员 YoaA,在
修复DNA复制过程中的DNA损伤。我们洛维特实验室的合作者使用 3'-叠氮基-
3’脱氧胸苷(AZT)作为阻断大肠杆菌 DNA 复制的试剂,他们鉴定了两个基因:yoaA 和
holC,共同作用使细胞对 AZT 产生耐受。蛋白质序列预测以及我们的初步结果
确认第一个基因 yoaA 编码 Fe-S 解旋酶。第二个基因 holC,编码 c 亚基
DNA 聚合酶 III 全酶 (pol III HE) 涉及大肠杆菌复制酶修复 AZT 损伤。然而,
我们的初步结果发现了 c 作为 YoaA 解旋酶亚基的新功能,我们提出
c 在修复 AZT 损伤的途径中与 YoaA 解旋酶而不是 pol III HE 一起发挥作用。主要
该提议的前提是 YoaA 和 c 构成 DNA 解旋酶,参与修复
停滞的复制叉处的 3' 末端受损。我们的目标是:1) 表征 YoaA•c 蛋白,2)
表征 YoaA•c 的解旋酶和底物偏好,以及 3) 定义之间的功能相互作用
YoaA 和 c 在体外进行实验,并开发了一种关键试剂来研究这些体内功能相互作用。这个提议
将提供 YoaA•c 解旋酶的第一个生化特征,该解旋酶是 Rad3/XPD 家族的成员
解旋酶通过维持基因组稳定性在人类健康中发挥关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda B Bloom其他文献
Linda B Bloom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda B Bloom', 18)}}的其他基金
Mechanisms and Functions of Iron-Sulfur Helicase in DNA Repair
铁硫解旋酶在 DNA 修复中的机制和功能
- 批准号:
10581194 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
Mechanisms and Functions of Iron-Sulfur Helicases in DNA repair
铁硫解旋酶在 DNA 修复中的机制和功能
- 批准号:
10096247 - 财政年份:2021
- 资助金额:
$ 29.57万 - 项目类别:
DYNAMICS OF PROTEIN-DNA INTERACTIONS IN DNA REPLICATION
DNA 复制中蛋白质-DNA 相互作用的动力学
- 批准号:
6180688 - 财政年份:1998
- 资助金额:
$ 29.57万 - 项目类别:
DYNAMICS OF PROTEIN DNA INTERACTIONS IN DNA REPLICATION
DNA 复制中蛋白质与 DNA 相互作用的动力学
- 批准号:
2697723 - 财政年份:1998
- 资助金额:
$ 29.57万 - 项目类别:
DYNAMICS OF PROTEIN-DNA INTERACTIONS IN DNA REPLICATION
DNA 复制中蛋白质-DNA 相互作用的动力学
- 批准号:
6768071 - 财政年份:1998
- 资助金额:
$ 29.57万 - 项目类别:
相似海外基金
ACTG240--ZIDOVUDINE VS 2,3-DIDEHYDRO-3'DEOXYTHYMIDINE IN HIV+ CHILDREN
ACTG240--齐多夫定与 2,3-二氢-3脱氧胸苷治疗 HIV 儿童
- 批准号:
6247868 - 财政年份:1997
- 资助金额:
$ 29.57万 - 项目类别:
Synthesis of Deoxythymidine Momophosphate and Glutamyldeoxy Thymidylate By Phage
噬菌体合成脱氧胸苷单磷酸和谷氨酰脱氧胸苷酸
- 批准号:
7901803 - 财政年份:1979
- 资助金额:
$ 29.57万 - 项目类别:
Standard Grant
Regulation of Deoxythymidine Kinase in Mammalian Systems
哺乳动物系统中脱氧胸苷激酶的调节
- 批准号:
6928973 - 财政年份:1969
- 资助金额:
$ 29.57万 - 项目类别:
BMY-27857 (2'3'-DIDEHYDRO-3'-DEOXYTHYMIDINE, D4T) ADMINISTERED TO HIV+ PATIENTS
BMY-27857(23-二氢-3-脱氧胸苷,D4T)用于 HIV 患者
- 批准号:
3849039 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:
ZIDOVUDINE VS 2',3'DIDEHYDRO-3'DEOXYTHYMIDINE IN CHILDREN
齐多夫定与 2,3二氢-3脱氧胸苷在儿童中的比较
- 批准号:
3742272 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:
BMY-27857 (2'3'-DIDEHYDRO-3'-DEOXYTHYMIDINE, D4T) ADMINISTERED TO HIV+ PATIENTS
BMY-27857(23-二氢-3-脱氧胸苷,D4T)用于 HIV 患者
- 批准号:
3785276 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:
AZT VS 2',3' DIDEOHYDRO-3'DEOXYTHYMIDINE IN CHILDREN W/HIV INFECTION
AZT 与 2,3 二脱氢-3脱氧胸苷治疗 HIV 感染儿童的比较
- 批准号:
5220423 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:
AZT VS 2',3' DIDEOHYDRO-3'DEOXYTHYMIDINE IN CHILDREN W/HIV INFECTION
AZT 与 2,3 二脱氢-3脱氧胸苷治疗 HIV 感染儿童的比较
- 批准号:
2481037 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:
ZIDOVUDINE VS 2,3-DIDEHYDRO-3 DEOXYTHYMIDINE IN HIV+ CHILDREN
齐多夫定 VS 2,3-二氢-3 脱氧胸苷治疗 HIV 儿童
- 批准号:
3742165 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:
AZT VS 2',3' DIDEOHYDRO-3'DEOXYTHYMIDINE IN CHILDREN WITH HIV INFECTION
AZT 与 2,3 二脱氢-3脱氧胸苷治疗 HIV 感染儿童的比较
- 批准号:
3742543 - 财政年份:
- 资助金额:
$ 29.57万 - 项目类别:














{{item.name}}会员




