Mitigating Injurious Falls in Older Adults Through Non-Injurious Fall and Gait Analysis From Floor Vibrations

通过非伤害性跌倒和地板振动的步态分析来减轻老年人的伤害性跌倒

基本信息

项目摘要

Project Summary and Abstract Falls are the leading cause of death due to injury. Falls are so common that 30% of community dwelling older adults, and 50% of residents in Care Facilities will experience a fall in the coming year. The risk of falling substantially increases for those having Alzheimer’s disease and related dementias. The financial burden is significant with fall-related costs being $50 billion. Care Facilities, who are often liable for the well-being of their patients, bear a substantial portion of the cost. A fall can cost $10,484 per case for Care Facilities. Commercially available fall detection systems operate via wearable pendant-based devices that patients press after experiencing a fall. Newer generations of these systems also incorporate accelerometers that are reportedly able to detect falls. These systems are patient-dependent, meaning that a patient must be wearing the pendant for it to work which older adults, particularly those with cognitive impairments, often do not. Furthermore, the patient has to be cognizant to press the button to call for aid if the pendant does not activate during a fall. This is unlikely to occur as even when people are not cognitively impaired, they will only activate the system 20% of the time. There is a clear need for an automated, patient-independent fall detection system to fill the gaps left by current approaches. Better yet would be a system that can detect non-injurious falls or changes in gait parameters, both of which are predictors of oncoming injurious falls. ASSET, in partnership with the University of South Carolina, has developed a patented, floor vibration monitoring system that can detect falls and collect gait information whilst being patient independent. The innovative product has the ability to firmly place control of liability back into the hands of Care Facilities much like what a fire alarm does for property damage from fires, and potentially saving ~$2.2 billion in fall-related costs with just 5% market adoption. During Phase II our overall goals are two-fold, first to further develop a system that does not rely on the patient to operate, overcoming the limitation of wearable systems and can additionally capture falls that are a predictor of oncoming injurious falls. We will monitor common areas with our vibration sensor system in places where Care Facility staff report the majority of falls occur. To accomplish the methods, we will use the Care Facilities’ common area video camera system to corroborate sensor fall activations are actual falls. Second, we will use the same passive system technology to explore gait measurement as an additional indicator of an oncoming health changes such as a fall. We will use gait parameter measuring technology in a Care Facility medical office for regular vital monitoring. We will use gait measurements with Facility fall reports to explore the effectiveness of our predictive fall risk model against industry-standard fall risk assessments. Future directions will include ASSET launching Beta trials of the product among Care Facilities for final refinement of the product before full release to the public.
项目摘要和摘要 跌倒是由于受伤而导致死亡的主要原因。瀑布是如此普遍,以至于30%的社区居住 成人和50%的护理机构居民将在来年下降。跌倒的风险 患有阿尔茨海默氏病和相关痴呆症的人大大增加。金融伯恩是 与跌倒有关的重要成本为500亿美元。护理设施,他们通常对自己的福祉负责 患者有很大一部分费用。跌倒的费用可能为每例护理设施的$ 10,484。 市售的秋季检测系统通过基于可穿戴吊坠的设备运行,患者按下 经历了秋天。这些系统的新一代还包含了加速度计 据报道能够检测到跌倒。这些系统依赖于患者,这意味着患者必须佩戴 吊坠的工作,老年人,尤其是那些认知障碍的老年人,通常不做。 此外,如果吊坠未激活 在秋天。即使人们没有认知受损,这也不太可能发生,他们只会激活 该系统有20%的时间。 显然需要一个自动,与患者无关的秋季检测系统来填补当前留下的空白 方法。更好的是一个可以检测到无兴伤的跌倒或获取参数变化的系统, 这两者都是即将到来的有害瀑布的预测指标。资产与南大学合作 卡罗来纳州,已经开发了一种专利的地板振动监控系统,可以检测到跌倒并收集步态 在患者独立的同时,信息。创新产品具有第五位控制的能力 责任回到护理设施的手中,就像火灾对火灾造成财产损害所做的事情一样, 并有可能节省约22亿美元的秋季相关成本,而市场采用了5%。 在第二阶段,我们的总体目标是两个方面,首先要进一步开发不依赖患者的系统 操作,克服可穿戴系统的局限性,并可以捕获预测因子 即将来临的有害瀑布。我们将使用我们的振动传感器系统监视公共区域 护理机构工作人员报告大多数瀑布发生。为了完成这些方法,我们将使用护理设施 公共区域摄像机系统以证实传感器跌落激活是实际跌倒。第二,我们将使用 相同的被动系统技术以探索符合度量作为迎面的附加指标 健康变化,例如跌倒。我们将在护理机构医疗中使用收集参数测量技术 定期监控的办公室。我们将使用与设施秋季报告的满足测量结果探索 我们预测性跌落风险模型对行业标准秋季风险评估的有效性。未来的方向 将包括在护理设施中启动该产品的Beta试验以最终完善产品的资产试验 在全部发布给公众之前。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Footstep localization and force estimation through structural vibrations using the FEEL Algorithm.
使用 FEEL 算法通过结构振动进行足迹定位和力估计。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stacy Lynne Fritz其他文献

Stacy Lynne Fritz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stacy Lynne Fritz', 18)}}的其他基金

Mitigating Injurious Falls in Older Adults Through Non-Injurious Fall and Gait Analysis From Floor Vibrations
通过非伤害性跌倒和地板振动的步态分析来减轻老年人的伤害性跌倒
  • 批准号:
    10383468
  • 财政年份:
    2018
  • 资助金额:
    $ 96.84万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
  • 批准号:
    10684399
  • 财政年份:
    2023
  • 资助金额:
    $ 96.84万
  • 项目类别:
Making Healthy Habits Stick: Extended Contact Interventions to Promote Long Term Physical Activity in African American Cancer Survivors
养成健康习惯:延长接触干预措施以促进非裔美国癌症幸存者的长期身体活动
  • 批准号:
    10821052
  • 财政年份:
    2023
  • 资助金额:
    $ 96.84万
  • 项目类别:
Free Time 4 Wellness
空闲时间 4 健康
  • 批准号:
    10719761
  • 财政年份:
    2023
  • 资助金额:
    $ 96.84万
  • 项目类别:
Walking Exercise Sustainability Through Telehealth for Veterans with Lower-LimbAmputation
通过远程医疗为下肢截肢退伍军人提供步行锻炼的可持续性
  • 批准号:
    10534859
  • 财政年份:
    2022
  • 资助金额:
    $ 96.84万
  • 项目类别:
Actigraphy Enhanced Clinical Chronic Lower Back Pain Management
体动记录仪增强临床慢性腰痛管理
  • 批准号:
    10211966
  • 财政年份:
    2021
  • 资助金额:
    $ 96.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了