Artificial intelligence-based health IT tools to optimize critical care pharmacist resources through adverse drug event prediction
基于人工智能的健康 IT 工具,通过药物不良事件预测来优化重症监护药剂师资源
基本信息
- 批准号:10503268
- 负责人:
- 金额:$ 38.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Critically ill patients are at heightened risk of adverse drug events (ADEs) that worsen outcomes. Critical care
pharmacists (CCPs) prevent ADEs, improve patient-centered outcomes, and reduce healthcare costs through
performing medication interventions. However, CCPs are an inequitably distributed and non-optimized
healthcare resource due to lack of health information technology (IT)-based predictive tools that can identify
CCP-driven medication interventions that prevent ADEs. To identify these preventative medication
interventions, delineating the medication outcome causal pathway among patient features, medication
interventions, ADEs, and patient-centered outcomes is required. Here, novel causal inference methodologies
incorporating artificial intelligence (AI) and machine learning (ML) will be applied for the first time to medication
safety questions in the ICU. The strategy will focus on developing a novel scoring tool designed for prediction,
the medication regimen complexity-intensive care unit (MRC-ICU) Scoring Tool, to predict intervenable ADEs
in this causal pathway that are predictable by patient features, preventable by CCPs, and otherwise associated
with poor outcomes. The central hypothesis of this AHRQ Health Services Research Project (R01), based on
preliminary data, is that an AI-informed dashboard visualizing the medication outcome causal pathway can
optimize CCP care to improve patient-centered outcomes. The objective of this work is to apply AI and ML
methodology to multi-center data to create prediction tools for integration into visualization dashboards that
answer vital questions including (1) what is the best metric for predicting ICU intervenable events and CCP
workload?; (2) what causal factors of intervenable events can be prevented by CCPs?; (3) how can CCPs
efficiently use AI-based predictions at the bedside? The long-term goal of the proposed work is to establish
validated prediction models that can be embedded into dashboards in the electronic health record (EHR) to
help guide CCP delivered care. The rationale for this work is that it will establish the MRC-ICU Scoring Tool as
a means of predicting medication safety events and CCP interventions. The central hypothesis will be tested
using large, multi-center datasets of ICU patients via these specific aims: (1) Create robust prediction models
of intervenable events to guide CCP medication interventions; (2) Explore causal relationships among
intervenable events, CCP interventions, and outcomes; (3) Design an EHR-integrated platform (ICView) to
visualize predictions to guide CCP care. Applying user centered design methods to create a health IT product
will result in a visualization dashboard (ICView) that houses MRC-ICU based, AI-informed prediction models
for CCP interventions that can improve patient outcomes. This innovative approach applies state-of-the-art ML
methodology to causal outcome predictions using the novel MRC-ICU Scoring Tool. The proposed work is
significant because any advances in the understanding of how CCPs improve outcomes would have a
profound public health impact due to their established role on the interprofessional healthcare team.
重症患者发生药物不良事件(ADE)的风险更高,导致结局恶化。重症监护
药剂师(CCP)预防ADE,改善以患者为中心的结果,并通过以下措施降低医疗成本
进行药物干预。然而,CCP是一个不公平分布和非优化的
由于缺乏基于健康信息技术(IT)预测工具,
CCP驱动的预防ADE的药物干预。识别这些预防性药物
干预,描绘患者特征,药物治疗
干预措施,ADE和以患者为中心的结果是必需的。在这里,新颖的因果推理方法
人工智能(AI)和机器学习(ML)将首次应用于药物治疗。
ICU的安全问题该战略将侧重于开发一种为预测而设计的新型评分工具,
药物治疗方案复杂性-重症监护室(MRC-ICU)评分工具,用于预测可干预的ADE
在这一因果途径中,患者特征可预测,CCP可预防,
结果很差。本AHRQ卫生服务研究项目(R 01)的中心假设,基于
初步数据显示,一个可视化药物结果因果路径的AI信息仪表板可以
优化CCP护理,以改善以患者为中心的结果。这项工作的目标是应用AI和ML
方法来创建预测工具,以便集成到可视化仪表板中,
回答重要问题,包括(1)预测ICU可干预事件和CCP的最佳指标是什么
工作量?(2)CCP可以预防哪些可干预事件的因果因素?(3)CCP如何
在床边有效地使用基于人工智能的预测?拟议工作的长期目标是建立
经验证的预测模型,可以嵌入到电子健康记录(EHR)的仪表板中,
帮助指导CCP提供护理。这项工作的基本原理是,它将建立MRC-ICU评分工具,
一种预测药物安全事件和CCP干预的方法。中心假设将被检验
通过这些特定目标使用ICU患者的大型多中心数据集:(1)创建强大的预测模型
可干预事件,以指导CCP药物干预;(2)探索因果关系,
可干预事件、CCP干预措施和结果;(3)设计EHR集成平台(ICView),
可视化预测以指导CCP护理。应用以用户为中心的设计方法创造健康IT产品
将产生一个可视化仪表板(ICView),其中包含基于MRC-ICU的AI预测模型
用于CCP干预,可以改善患者的结果。这种创新的方法应用了最先进的ML
使用新的MRC-ICU评分工具进行因果结果预测的方法。拟议的工作是
重要的是,在理解CCP如何改善结果方面的任何进展都将产生
由于他们在跨专业医疗团队中的既定角色,他们对公共卫生产生了深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Sikora其他文献
Andrea Sikora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Sikora', 18)}}的其他基金
Machine learning validation of medication regimen complexity for critical care pharmacist resource prediction
重症监护药剂师资源预测的药物治疗方案复杂性的机器学习验证
- 批准号:
10448856 - 财政年份:2022
- 资助金额:
$ 38.4万 - 项目类别:
Machine learning validation of medication regimen complexity for critical care pharmacist resource prediction
重症监护药剂师资源预测的药物治疗方案复杂性的机器学习验证
- 批准号:
10606526 - 财政年份:2022
- 资助金额:
$ 38.4万 - 项目类别:
相似国自然基金
跨文化团队中团队协调机制和团队效能的研究:文化智力的视角
- 批准号:71072055
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
基于混沌动力学与复杂网络的群智能优化研究
- 批准号:60673098
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
智力超常儿童的基因分型的初步研究
- 批准号:30670716
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Standard Grant
AI4HOPE: ARTIFICIAL INTELLIGENCE BASED HEALTH, OPTIMISM, PURPOSE, AND ENDURANCE IN PALLIATIVE CARE FOR DEMENTIA
AI4HOPE:基于人工智能的痴呆症姑息治疗中的健康、乐观、目标和耐力
- 批准号:
10103129 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
EU-Funded
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 38.4万 - 项目类别:
Collaborative R&D
NIMBLE - an artificial intelligence-based early warning system for bladder cancer
NIMBLE——基于人工智能的膀胱癌早期预警系统
- 批准号:
486937 - 财政年份:2023
- 资助金额:
$ 38.4万 - 项目类别:
Miscellaneous Programs
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
$ 38.4万 - 项目类别:
Operating Grants
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
- 批准号:
2323757 - 财政年份:2023
- 资助金额:
$ 38.4万 - 项目类别:
Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 38.4万 - 项目类别:
Identification of the origins of inherited retinal diseases and clarification of genotype-phenotype correlations based on three major ethnic groups worldwide utilizing artificial intelligence.
利用人工智能,基于全球三个主要种族群体,识别遗传性视网膜疾病的起源并阐明基因型-表型相关性。
- 批准号:
22KJ2665 - 财政年份:2023
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows