Machine learning validation of medication regimen complexity for critical care pharmacist resource prediction
重症监护药剂师资源预测的药物治疗方案复杂性的机器学习验证
基本信息
- 批准号:10606526
- 负责人:
- 金额:$ 14.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-08 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Intensive care unit (ICU) patients are at heightened risk of adverse drug events (ADEs) and poor outcomes.
Critical care pharmacists (CCPs) prevent ADEs, improve patient outcomes, and reduce healthcare costs
through performing medication interventions. However, CCPs are an underused healthcare resource due to
lack of health information technology (IT)-based predictive tools to allocate the care they provide to ICU
patients. Currently, there are no validated health IT tools for CCPs available to optimize patient-centered care.
The central hypothesis of this R21 Health Information Technology to Improve Health Care Quality and
Outcomes Award, based on preliminary data, is that data-driven methods applied to the MRC-ICU Scoring
Tool will out-perform predictions of a rules-based model in predicting CCP interventions that can improve
patient outcomes and may serve as the foundation for development of novel health IT tools that optimize the
patient-centered care provided by CCPs. The MRC-ICU Scoring Tool is the first tool designed to measure
medication regimen complexity in ICU patients. To be scaled-up, this tool requires thorough validation and IT
based automation. The objective of this work is to apply machine learning (ML) methodology to multi-center
data to create prediction tools for integration into visualization dashboards that answer vital questions including
(1) what are the predicted number of CCP interventions per patient; (2) what is the risk of real-time modifiable
outcomes (e.g., fluid overload); (3) what are the predicted outcomes (e.g., mortality, length of stay). The long-
term goal of the proposed work is to establish validated prediction models that can be embedded into
dashboards in the electronic health record (EHR) to help guide CCP resource deployment. The rationale for
this work is that it will establish the MRC-ICU Scoring Tool as a means of synthesizing patient data for
integration across EHR systems. The central hypothesis will be tested using large, multi-center data of ICU
patients via these specific aims: (1) Apply ML-based prediction methods to develop a new model of medication
regimen complexity as a metric for predicting CCP interventions and patient outcomes; (2) Compare the
performance of different models to predict CCP interventions and patient outcomes; (3) Design a web-based
dashboard (ICView) to visualize medication regimen complexity-based predictions. The health IT product will
result in a Web-based dashboard (ICView) that houses a real-time, automated MRC-ICU Scoring Tool in
addition to prediction models for CCP interventions that can improve patient outcomes. This innovative
approach applies state-of-the-art ML methodology to the novel MRC-ICU Scoring Tool. The proposed work is
significant because any advances in the understanding of how CCPs improve outcomes would have a
profound public health impact due to their established role on the interprofessional healthcare team. The health
IT products provide the necessary foundation for a future R18 application for a multi-center, prospective trial to
evaluate MRC-ICU based CCP resource allocation strategies.
重症监护室(ICU)患者发生药物不良事件(ADE)和不良结局的风险较高。
重症监护药剂师(CCP)预防ADE,改善患者结局,降低医疗成本
通过药物干预。然而,CCP是一种未充分利用的医疗保健资源,
缺乏基于健康信息技术(IT)的预测工具来分配他们为ICU提供的护理
患者目前,没有经过验证的医疗IT工具可供关键临床医生使用,以优化以患者为中心的护理。
这一R21健康信息技术的中心假设,以提高医疗保健质量和
结果奖,基于初步数据,是数据驱动的方法应用于MRC-ICU评分
该工具在预测CCP干预方面的表现将优于基于规则的模型的预测,
患者的结果,并可作为开发新的健康IT工具的基础,
由CCP提供的以患者为中心的护理。MRC-ICU评分工具是第一个旨在测量
ICU患者的用药方案复杂性。为了扩大规模,这一工具需要彻底的验证和IT
基于自动化。本文的目的是将机器学习方法应用于多中心
数据来创建预测工具,以便集成到可视化仪表板中,这些仪表板可回答重要问题,
(1)每个患者的CCP干预的预测数量是多少;(2)实时可修改的风险是什么
结果(例如,流体超负荷);(3)预测的结果是什么(例如,死亡率、住院时间)。很长的-
拟议工作的长期目标是建立有效的预测模型,可以嵌入到
电子健康记录(EHR)中的仪表板,以帮助指导CCP资源部署。的理由
这项工作的目的是建立MRC-ICU评分工具,作为综合患者数据的一种手段,
整合EHR系统。中心假设将使用ICU的大型多中心数据进行检验
患者通过这些特定的目标:(1)应用基于ML的预测方法,以开发一种新的药物模型
方案复杂性作为预测CCP干预和患者结局的指标;(2)比较
不同模型预测CCP干预和患者结局的性能;(3)设计基于网络的
仪表板(ICView),以可视化基于药物治疗方案复杂性的预测。健康IT产品将
产生一个基于Web的仪表板(ICView),其中包含实时、自动化的MRC-ICU评分工具,
除了预测模型的CCP干预,可以改善病人的结果。这一创新
方法将最先进的ML方法应用于新型MRC-ICU评分工具。拟议的工作是
重要的是,在理解CCP如何改善结果方面的任何进展都将产生
由于他们在跨专业医疗团队中的既定角色,他们对公共卫生产生了深远的影响。健康
IT产品为未来R18应用于多中心前瞻性试验提供了必要的基础,
评估基于MRC-ICU的CCP资源分配策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pharmacist Metrics in the Pediatric Intensive Care Unit: an Exploration of the Medication Regimen Complexity-Intensive Care Unit (MRC-ICU) Score.
儿科重症监护病房的药剂师指标:用药方案复杂性重症监护病房 (MRC-ICU) 评分的探索。
- DOI:10.5863/1551-6776-28.8.728
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kandaswamy,Swaminathan;Dawson,ThomasE;Moore,WhitneyH;Howell,Katherine;Beus,Jonathan;Adu,Olutola;Sikora,Andrea
- 通讯作者:Sikora,Andrea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Sikora其他文献
Andrea Sikora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Sikora', 18)}}的其他基金
Machine learning validation of medication regimen complexity for critical care pharmacist resource prediction
重症监护药剂师资源预测的药物治疗方案复杂性的机器学习验证
- 批准号:
10448856 - 财政年份:2022
- 资助金额:
$ 14.26万 - 项目类别:
Artificial intelligence-based health IT tools to optimize critical care pharmacist resources through adverse drug event prediction
基于人工智能的健康 IT 工具,通过药物不良事件预测来优化重症监护药剂师资源
- 批准号:
10503268 - 财政年份:2022
- 资助金额:
$ 14.26万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
A machine learning based fetal monitoring system to predict and prevent fetal hypoxia.
基于机器学习的胎儿监测系统,用于预测和预防胎儿缺氧。
- 批准号:
10760437 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
Machine Learning Phenotypic De Novo Drug Design
机器学习表型从头药物设计
- 批准号:
10762633 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别:
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
- 批准号:
10735863 - 财政年份:2023
- 资助金额:
$ 14.26万 - 项目类别: