3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery

用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管

基本信息

  • 批准号:
    10502710
  • 负责人:
  • 金额:
    $ 70.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary: Cerebral aneurysms are estimated to be prevalent in 3–7% of the general population—with cases increasing by more than 5% each year—resulting in ~500,000 deaths annually. Minimally invasive neurosurgery typically represents the best surgical option for treating unruptured aneurysms due to benefits including reduced length of stay and complications compared to invasive surgical clipping. Endovascular neurointerventions rely on microcatheters to traverse cerebral anatomy safely to deliver embolic devices or stents for aneurysm treatment. In many cases, however, tortuous vasculature and geometrically complex aneurysms pose substantial navigation challenges for neurointerventionalists due to an inability to maneuver conventional microcatheters safely. These difficulties in navigating such cerebrovascular anatomies contribute to longer procedural times, unsuccessful catheterization attempts, and increased risks of complications. To address the clinical need for neurosurgical microcatheters that overcome these maneuverability-associated barriers, we propose to engineer and evaluate 3D-nanoprinted soft robotic microcatheters with integrated microfluidic circuitry as a means to enable on-demand, multi-directional steering and navigation control during endovascular neurointerventions. Our overarching hypothesis is that, by leveraging and extending recent advances at the intersection of machine learning-based design, additive nanomanufacturing, integrated microfluidic circuitry, and soft microrobotics, novel classes of remotely steerable neurosurgical microcatheters can be realized at unprecedented scales to surmount current maneuverability-based deficits, and ultimately, improve catheterization efficacy, safety, and outcomes in the treatment of cerebral aneurysms. We will investigate the clinical feasibility of this hypothesis through four specific aims. In Aim 1, we will create machine learning-based design techniques for predicting and informing the operational performance of the soft robotic microcatheter. In Aim 2, we will examine the manu- facturing efficacy for 3D nanoprinting multi-actuator tips and integrated microfluidic circuits both independently and as fully unified soft robotic microcatheters capable of on-demand, multi-directional deformations with minimal infrastructure and external control scheme-associated requirements. In Aim 3, we will develop a handheld controller for the neurointerventionalist and compare the maneuverability efficacy of the soft robotic micro- catheter to that of standard clinical microcatheters using in vitro models of cerebrovascular anatomy based on patient-specific clinical 3D angiography images. In Aim 4, we will assess the feasibility and safety of the soft robotic microcatheter (i.e., with respect to standard clinical microcatheters) by performing minimally invasive endovascular neurointerventions in animal models (canine, n=8). If successful, the proposed 3D-nanoprinted soft robotic microcatheters hold unique promise to be transformative not only for treating cerebral aneurysms, but also for wide-ranging endovascular interventions currently considered challenging or high risk due to small, complex, tortuous, and/or delicate vasculature, such as for the treatment of pediatric congenital heart defects.
项目总结:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Daniel Sochol其他文献

Ryan Daniel Sochol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Daniel Sochol', 18)}}的其他基金

3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
  • 批准号:
    10654054
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 70.2万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 70.2万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了