3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
基本信息
- 批准号:10654054
- 负责人:
- 金额:$ 66.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnatomyAneurysmAngiographyAnimal ModelBlood VesselsCanis familiarisCatheterizationCathetersCerebral AneurysmCerebrovascular systemCerebrumCessation of lifeChildhoodClinicalComplexComplicationCongenital Heart DefectsCraniotomyDevicesDissectionDistalEngineeringGeneral PopulationGeometryGoalsIn VitroInfrastructureInterventionIntracranial HemorrhagesIschemiaLasersLength of StayLocationMachine LearningMeasuresMedicalMethodsMicrofluidicsMorbidity - disease rateNanomanufacturingNeurologicNeurosurgical ProceduresOperative Surgical ProceduresOutcomePatientsPerforationPerformancePrintingProceduresReportingResearchResolutionRiskRobotRoboticsRunningRuptureSafetySchemeSideSpecialistStentsSubarachnoid HemorrhageSurgical ClipsSystemTechniquesTechnologyTestingTimeTransistorsTubeVasospasmWritingcerebrovascularcerebrovascular surgeryclinically relevantdesignhigh riskimprovedimproved outcomein vitro Modelin vivoinnovationmachine learning frameworkmanufacturemicrorobotminimally invasivemortalityneurosurgerynoveloperationpredictive modelingprocedure safetysafety and feasibilitytwo-photon
项目摘要
Project Summary:
Cerebral aneurysms are estimated to be prevalent in 3–7% of the general population—with cases increasing
by more than 5% each year—resulting in ~500,000 deaths annually. Minimally invasive neurosurgery typically
represents the best surgical option for treating unruptured aneurysms due to benefits including reduced length
of stay and complications compared to invasive surgical clipping. Endovascular neurointerventions rely on
microcatheters to traverse cerebral anatomy safely to deliver embolic devices or stents for aneurysm treatment.
In many cases, however, tortuous vasculature and geometrically complex aneurysms pose substantial
navigation challenges for neurointerventionalists due to an inability to maneuver conventional microcatheters
safely. These difficulties in navigating such cerebrovascular anatomies contribute to longer procedural times,
unsuccessful catheterization attempts, and increased risks of complications. To address the clinical need for
neurosurgical microcatheters that overcome these maneuverability-associated barriers, we propose to engineer
and evaluate 3D-nanoprinted soft robotic microcatheters with integrated microfluidic circuitry as a means to
enable on-demand, multi-directional steering and navigation control during endovascular neurointerventions.
Our overarching hypothesis is that, by leveraging and extending recent advances at the intersection of machine
learning-based design, additive nanomanufacturing, integrated microfluidic circuitry, and soft microrobotics,
novel classes of remotely steerable neurosurgical microcatheters can be realized at unprecedented scales to
surmount current maneuverability-based deficits, and ultimately, improve catheterization efficacy, safety, and
outcomes in the treatment of cerebral aneurysms. We will investigate the clinical feasibility of this hypothesis
through four specific aims. In Aim 1, we will create machine learning-based design techniques for predicting and
informing the operational performance of the soft robotic microcatheter. In Aim 2, we will examine the manu-
facturing efficacy for 3D nanoprinting multi-actuator tips and integrated microfluidic circuits both independently
and as fully unified soft robotic microcatheters capable of on-demand, multi-directional deformations with minimal
infrastructure and external control scheme-associated requirements. In Aim 3, we will develop a handheld
controller for the neurointerventionalist and compare the maneuverability efficacy of the soft robotic micro-
catheter to that of standard clinical microcatheters using in vitro models of cerebrovascular anatomy based on
patient-specific clinical 3D angiography images. In Aim 4, we will assess the feasibility and safety of the soft
robotic microcatheter (i.e., with respect to standard clinical microcatheters) by performing minimally invasive
endovascular neurointerventions in animal models (canine, n=8). If successful, the proposed 3D-nanoprinted
soft robotic microcatheters hold unique promise to be transformative not only for treating cerebral aneurysms,
but also for wide-ranging endovascular interventions currently considered challenging or high risk due to small,
complex, tortuous, and/or delicate vasculature, such as for the treatment of pediatric congenital heart defects.
项目概要:
据估计,脑动脉瘤在一般人群中的患病率为3-7%,
每年增加5%以上,每年造成约50万人死亡。微创神经外科通常
代表了治疗未破裂动脉瘤的最佳手术选择,因为其受益包括缩短长度
与侵入性手术夹闭相比,血管内神经介入治疗依赖于
微导管可安全穿过大脑解剖结构,输送栓塞器械或支架进行动脉瘤治疗。
然而,在许多情况下,曲折的血管系统和几何形状复杂的动脉瘤造成实质性的损伤。
由于无法操纵传统微导管,神经介入医生面临导航挑战
平安导航这种脑血管解剖结构的这些困难导致更长的手术时间,
不成功的导管插入尝试和并发症的风险增加。为了满足临床需求,
神经外科微导管,克服了这些可移植性相关的障碍,我们建议工程师
并评估具有集成微流体电路的3D纳米打印软机器人微导管,
在血管内神经介入治疗期间实现按需、多方向转向和导航控制。
我们的首要假设是,通过利用和扩展机器交叉领域的最新进展,
基于学习的设计、添加剂纳米制造、集成微流体电路和软微机器人,
新型的远程可操纵神经外科微导管可以以前所未有的规模实现,
克服当前基于可操作性的缺陷,并最终提高导管插入术的有效性、安全性和
脑动脉瘤的治疗结果。我们将调查这一假设的临床可行性
四个具体目标。在目标1中,我们将创建基于机器学习的设计技术来预测和
告知软机器人微导管的操作性能。在第二章中,我们将研究...
3D纳米打印多致动器尖端和集成微流体回路的制造效率,
作为完全统一的软机器人微导管,能够按需进行多方向变形,
基础设施和外部控制计划相关要求。在目标3中,我们将开发一款手持设备,
控制器的神经介入医生,并比较软机器人微型,
导管与标准临床微导管的比较,使用基于以下的脑血管解剖体外模型
患者特异性临床3D血管造影图像。在目标4中,我们将评估软件的可行性和安全性。
机器人微导管(即,相对于标准临床微导管),
动物模型中的血管内神经介入术(犬,n=8)。如果成功,拟议的3D纳米打印
软机器人微导管具有独特的前景,不仅用于治疗脑动脉瘤,
而且还用于目前被认为具有挑战性或高风险的广泛的血管内介入,
复杂的、曲折的和/或脆弱的脉管系统,例如用于治疗小儿先天性心脏缺陷。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.
用于制造长而灵活的微流体管的 3D 微印刷同轴喷嘴。
- DOI:10.1109/mems58180.2024.10439296
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Young,OliviaM;Felix,BaileyM;Fuge,MarkD;Krieger,Axel;Sochol,RyanD
- 通讯作者:Sochol,RyanD
GEOMETRIC DETERMINANTS OF CELL VIABILITY FOR 3D-PRINTED HOLLOW MICRONEEDLE ARRAY-MEDIATED DELIVERY.
3D 打印空心微针阵列介导的细胞活力的几何决定因素。
- DOI:10.1109/mems58180.2024.10439381
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Sarker,Sunandita;Wang,Jinghui;Shah,ShreyA;Jewell,ChristopherM;Rand-Yadin,Kinneret;Janowski,Miroslaw;Walczak,Piotr;Liang,Yajie;Sochol,RyanD
- 通讯作者:Sochol,RyanD
FABRICATION OF MULTILUMEN MICROFLUIDIC TUBING FOR EX SITU DIRECT LASER WRITING.
用于异地直接激光书写的多腔微流体管的制造。
- DOI:10.1109/mems58180.2024.10439522
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Felix,BaileyM;Young,OliviaM;Andreou,JordiT;Sarker,Sunandita;Fuge,MarkD;Krieger,Axel;Weiss,CliffordR;Bailey,ChristopherR;Sochol,RyanD
- 通讯作者:Sochol,RyanD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Daniel Sochol其他文献
Ryan Daniel Sochol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Daniel Sochol', 18)}}的其他基金
3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
- 批准号:
10502710 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 66.74万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 66.74万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 66.74万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 66.74万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 66.74万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 66.74万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 66.74万 - 项目类别:
Standard Grant