Cross modal plasticity following loss of vision at different developmental stages: Cortical function, connections and compensatory behavior
不同发育阶段视力丧失后的跨模式可塑性:皮质功能、连接和补偿行为
基本信息
- 批准号:10504252
- 负责人:
- 金额:$ 37.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic StimulationAcuteAddressAdultAffectAgeAge of OnsetAnatomyAnimal ModelAnimalsAreaAuditoryAxonBehaviorBehavioralBilateralBirthBlindnessBody partBrainCannulasChildComplexDataDevelopmentDidelphidaeDiscriminationElectrophysiology (science)EmbryoEnvironmentEyeFailureForelimbGene TargetingImpairmentImplantInjectionsLaboratoriesLifeLinkMammalsMediatingMicroinjectionsModalityMonodelphisMonodelphis DomesticaMovementMusMuscimolNeocortexNervous system structureNeuronsOrganPathway interactionsPerformancePlayPropertyRetinaRetinal Ganglion CellsRoleSensoryShapesSkinSomatosensory CortexStimulusTactileTask PerformancesTextureThalamic NucleiTherapeutic InterventionTimeTracerTrainingVibrissaeVisionVisualWalkingarea V1area striataauditory processingauditory stimulusbasebehavior predictionbehavior testbehavioral outcomeblindexperimental studyextrastriate visual cortexfluorophoregraspin uterokinematicsmachine learning algorithmmature animalmultimodalitynew growthnovelprematurerelating to nervous systemresponseretina implantationretinogeniculatesensory inputsensory systemsomatosensorytargeted treatment
项目摘要
A distinguishing feature of the mammalian neocortex is its remarkable ability to change over a lifetime,
particularly during early development. The development of cortical fields and their connections is highly
dependent on the incoming sensory inputs they receive from the various sensory organs, such as the eyes and
the skin. This input, together with the unique combinations of sensory information available in the environment
shapes the neocortex to generate optimal behavior. We know from previous studies in our own laboratory that
very early loss of input from the eyes leads to massive changes in the brain, such that all of what would
normally be the primary visual cortex (V1) contains neurons that respond to somatosensory and auditory
stimulation. This reorganized V1 receives ectopic input from thalamic nuclei and cortical fields associated with
somatosensory and auditory processing. The current proposal addresses several fundamental questions
raised by these previous findings: 1) How does the age of onset of blindness differentially impact cortical
connectivity? 2) What are single-neuron response properties in reorganized V1 and S1, and does age of
blindness onset impact these properties? 3) What is the relationship between functional and anatomical
changes in V1 and S1 and compensatory behaviors mediated by the spared sensory systems? Our animal
model, the short-tailed opossum, is highly altricial at birth (equivalent to embryonic day 11 in the mouse),
allowing ex utero manipulations to the nervous system at developmental time points that would be in utero in
other mammals. In these experiments, bilateral enucleations will be made at specific developmental
milestones: 1) Prior to the onset of spontaneous activity in the retina, before retinal ganglion cells have
reached their subcortical targets, and before thalamocortical axons have innervated the neocortex; 2) When
spontaneous activity in the retina is present and retinogeniculate and thalamocortical axons have innervated
their targets; 3) Just after eye opening, when sensory driven activity in the retina is present and thalamocortical
and corticocortical connections have formed. Following enucleations, animals will be assessed at several
different time points. These studies are novel in scope in that they interrogate how the of age of vision loss
affects the reorganization of brain circuits and behavior, and if functional and anatomical changes to the
neocortex are linked to compensatory behavior. These data can direct therapeutic interventions (e.g. tactile
training based behavior), and even allow predictions for behavioral outcomes following retinal implants or gene
targeted therapies performed at different ages.
哺乳动物新皮层的一个显著特征是其在一生中不断变化的非凡能力,
尤其是在早期发展阶段。皮层区域及其连接的发展是高度相关的。
取决于他们从各种感觉器官(如眼睛)接收的传入感觉输入,
皮肤这种输入,连同环境中可用的感官信息的独特组合,
塑造大脑皮层以产生最佳行为。我们从我们自己实验室以前的研究中得知,
早期失去眼睛的输入会导致大脑发生巨大变化,
正常情况下,初级视觉皮层(V1)包含对躯体感觉和听觉做出反应的神经元。
刺激.这个重组的V1接受来自丘脑核团和皮层区域的异位输入,
体感和听觉处理。目前的建议涉及几个基本问题
这些先前的发现提出:1)失明的发病年龄如何不同地影响皮质
连通性?2)在重组的V1和S1中,单神经元反应特性是什么?
失明会影响这些特性吗3)功能和解剖之间的关系是什么
V1和S1的变化以及由备用感觉系统介导的代偿行为?我们的动物
模型,短尾负鼠,在出生时是高度成熟的(相当于小鼠胚胎的第11天),
允许在发育时间点对神经系统进行子宫外操作,
其他哺乳动物在这些实验中,将在特定的发育阶段进行双侧去核。
里程碑:1)在视网膜中自发活动开始之前,在视网膜神经节细胞具有自发活动之前,
到达他们的皮层下目标,并在丘脑皮层轴突已经支配新皮层; 2)当
视网膜中存在自发活动,视网膜膝状体和丘脑皮质轴突受到神经支配
3)刚睁眼后,当视网膜中的感觉驱动活动存在时,丘脑皮质
和皮质连接已经形成。摘除后,将在几个时间点评估动物
不同的时间点。这些研究在范围上是新颖的,因为他们询问了视力丧失的年龄是如何变化的。
影响大脑回路和行为的重组,如果功能和解剖结构发生变化,
新皮层与补偿行为有关这些数据可以指导治疗干预(例如,触觉
基于训练的行为),甚至可以预测视网膜植入或基因治疗后的行为结果。
针对不同年龄段进行的针对性治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEAH ANN KRUBITZER其他文献
LEAH ANN KRUBITZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEAH ANN KRUBITZER', 18)}}的其他基金
Cross modal plasticity following loss of vision at different developmental stages: Cortical function, connections and compensatory behavior
不同发育阶段视力丧失后的跨模式可塑性:皮质功能、连接和补偿行为
- 批准号:
10666604 - 财政年份:2022
- 资助金额:
$ 37.18万 - 项目类别:
The impact of the environment on sensorimotor cortex in rats: Functional organization, connections and behavior
环境对大鼠感觉运动皮层的影响:功能组织、连接和行为
- 批准号:
10553708 - 财政年份:2021
- 资助金额:
$ 37.18万 - 项目类别:
The impact of the environment on sensorimotor cortex in rats: Functional organization, connections and behavior
环境对大鼠感觉运动皮层的影响:功能组织、连接和行为
- 批准号:
10117139 - 财政年份:2021
- 资助金额:
$ 37.18万 - 项目类别:
The impact of the environment on sensorimotor cortex in rats: Functional organization, connections and behavior
环境对大鼠感觉运动皮层的影响:功能组织、连接和行为
- 批准号:
10337134 - 财政年份:2021
- 资助金额:
$ 37.18万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9030107 - 财政年份:2015
- 资助金额:
$ 37.18万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9197675 - 财政年份:2015
- 资助金额:
$ 37.18万 - 项目类别:
Can Cortical Plasticity be Directed and Amplified Following Early Loss of Vision?
早期视力丧失后皮质可塑性可以被引导和增强吗?
- 批准号:
8600683 - 财政年份:2013
- 资助金额:
$ 37.18万 - 项目类别:
Can Cortical Plasticity be Directed and Amplified Following Early Loss of Vision?
早期视力丧失后皮质可塑性可以被引导和增强吗?
- 批准号:
8421193 - 财政年份:2013
- 资助金额:
$ 37.18万 - 项目类别:
Can Cortical Plasticity be Directed and Amplified Following Early Loss of Vision?
早期视力丧失后皮质可塑性可以被引导和增强吗?
- 批准号:
8821621 - 财政年份:2013
- 资助金额:
$ 37.18万 - 项目类别:
Effects of Reversible Deactivation of Posterior Parietal Cortex in New World Cebu
宿雾新世界后顶叶皮质可逆失活的影响
- 批准号:
8634824 - 财政年份:2013
- 资助金额:
$ 37.18万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 37.18万 - 项目类别:
Operating Grants