Enhancing the Efficiency of Data Collection for Surgical Quality Improvement

提高数据收集效率以提高手术质量

基本信息

项目摘要

Background: Although the majority of national quality initiatives utilize electronic health record (EHR) or administrative data, their ability to adequately discriminate performance has been brought into question and it is unclear certain outcomes, such as postoperative complications, are accurately ascertained. By comparison, clinical registry data, like the VA Surgical Quality Improvement Program (VASQIP), are widely considered robust for performance evaluation and quality improvement (QI). But, VASQIP data collection is resource intensive—data are manually abstracted by trained local Surgical Quality Nurses (SQNs) for a systematic sample of surgical cases performed at all VA hospitals. VASQIP then uses the data to characterize the quality and safety of surgical care at each hospital based on risk-adjusted 30-day morbidity and mortality rates. Significance: VASQIP data collection practices present two important limitations. First, perioperative outcome rates have significantly decreased the past two decades making it unclear whether systematic case sampling is adequately powered to identify underperforming hospitals. Second, the time required for VASQIP data collection detracts from SQNs’ ability to engage in other important job functions, like local QI activities. Because SQNs spend substantial time working with VASQIP data, this represents an important missed opportunity to identify a quality problem when it is evolving rather than when it has already occurred. As such, alternative approaches that can provide reliable data and decrease the burden of data collection would have tangible benefits for other national surgical and non-surgical QI initiatives within VA and the private sector. Innovation: This project is novel because it can change the paradigm regarding the collection of QI data from purely EHR or clinical registry to a more efficient hybrid model that could address reliability concerns associated with the use of EHR (or administrative) data alone. It will also provide real-world, generalizable data that can only be obtained within VA's data platform and can inform VA and the private sector national surgical and non-surgical QI initiatives. We have two national operational partners: 1.) VA National Surgery Office (NSO); 2.) Office of Reporting, Analytics, Performance, Improvement, and Deployment (RAPID). Specific Aims: The overall goal is to address two important questions. First, given low perioperative outcome rates across VA, is systematic sampling robust enough to inform surgical QI? Second, are hybrid data (i.e.: EHR combined with clinical registry variables) a potentially reliable alternative for measuring VA hospital surgical performance? These questions will be explored through the following specific aims: (1) Evaluate whether analyzing all VASQIP-eligible surgical cases, relative to current systematic case sampling, improves negative predictive value (i.e.: decreases false negative rates) for identifying VA hospitals with outlier performance; (2) Compare the use of hybrid EHR and clinical registry data, relative to clinical registry alone, for evaluating risk-adjusted surgical performance at VA hospitals; (3) Explore how more efficient VASQIP data collection could enhance local QI efforts through in-depth, key informant interviews with SQNs. Methodology: This mixed-methods proposal will involve hospital-level, observational studies using VASQIP and Corporate Data Warehouse (CDW) data from patients who underwent non-cardiac surgery (2016-2019) as well as qualitative interviews with SQNs. With comparative effectiveness in mind, these data will be used to explore what would be observed if data from all surgical cases were included in VASQIP and to understand whether other existing VA data sources might improve VASQIP data collection efficiency and enhance local QI. Next Steps: With the NSO, we will prospectively compare the fidelity of hand-abstracted variables to automatable variables from CDW. The implementation plan (supported by the VA National Director of Surgery) will utilize VASQIP’s existing infrastructure by partnering with VINCI to provide the NSO with centralized CDW access (using RAPID’s data access model as a template) allowing automated data collection.
背景:尽管大多数国家质量举措都利用电子健康记录 (EHR) 或 行政数据,其充分区分绩效的能力受到质疑,并且 目前尚不清楚某些结果(例如术后并发症)能否准确确定。相比之下, 临床注册数据,如 VA 手术质量改进计划 (VASQIP),被广泛考虑 对于绩效评估和质量改进 (QI) 具有鲁棒性。但是,VASQIP数据收集是资源 密集型——数据由经过培训的当地外科优质护士 (SQN) 手动提取,用于系统化分析 在退伍军人管理局所有医院进行的手术病例样本。然后 VASQIP 使用数据来表征质量 根据风险调整后的 30 天发病率和死亡率,评估每家医院的手术治疗安全性。 意义:VASQIP 数据收集实践存在两个重要的局限性。一、围手术期 过去二十年来,结果率显着下降,因此尚不清楚系统性病例是否 抽样有足够的能力来识别表现不佳的医院。二、VASQIP所需时间 数据收集会降低 SQN 参与其他重要工作职能的能力,例如当地的 QI 活动。 由于 SQN 花费大量时间处理 VASQIP 数据,因此这代表了一个重要的遗漏 当质量问题正在演变时而不是已经发生时,有机会识别它。像这样, 可以提供可靠数据并减轻数据收集负担的替代方法 为 VA 和私营部门内的其他国家外科和非外科 QI 举措带来切实的好处。 创新:这个项目很新颖,因为它可以改变收集 QI 数据的范式 纯粹的 EHR 或临床登记到更有效的混合模型,可以解决可靠性问题 与单独使用 EHR(或管理)数据相关。它还将提供现实世界的、可推广的 数据只能在 VA 的数据平台内获取,并且可以通知 VA 和私营部门国家 手术和非手术 QI 举措。我们有两个国家级运营合作伙伴:1.) VA Nationalurge 办公室(国家统计局); 2.) 报告、分析、绩效、改进和部署办公室 (RAPID)。 具体目标:总体目标是解决两个重要问题。首先,考虑到围手术期低 VA 的结果率,系统抽样是否足够强大以告知手术 QI?二、是混合数据 (即:EHR 与临床登记变量相结合)测量 VA 的潜在可靠替代方案 医院手术表现如何?这些问题将通过以下具体目标进行探讨:(1) 评估是否分析所有符合 VASQIP 资格的手术病例(相对于当前的系统病例抽样) 提高识别异常值 VA 医院的阴性预测值(即:降低假阴性率) 表现; (2) 比较混合 EHR 和临床注册数据的使用,相对于单独的临床注册, 用于评估退伍军人管理局医院的风险调整手术表现; (3)探索如何更高效的VASQIP数据 通过与 SQN 进行深入、重要的知情人访谈,收集数据可以加强当地的 QI 工作。 方法:该混合方法提案将涉及使用 VASQIP 的医院级别观察性研究 以及接受非心脏手术的患者的企业数据仓库 (CDW) 数据(2016-2019 年) 以及对 SQN 的定性访谈。考虑到比较有效性,这些数据将用于 探索如果所有手术病例的数据都包含在 VASQIP 中会观察到什么,并了解 其他现有的 VA 数据源是否可以提高 VASQIP 数据收集效率并增强本地 QI。 后续步骤:通过 NSO,我们将前瞻性地将手工抽象变量的保真度与 CDW 中的自动化变量。实施计划(由 VA 国家主任支持) 手术)将与 VINCI 合作,利用 VASQIP 的现有基础设施,为 NSO 提供 集中式 CDW 访问(使用 RAPID 的数据访问模型作为模板)允许自动数据收集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nader Nabile Massarweh其他文献

Examining Care Fragmentation After PAD Interventions: The Readmission Event
  • DOI:
    10.1016/j.jvs.2022.11.019
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Olamide Alabi;Nader Nabile Massarweh;Xinyan Zheng;Jialin Mao;Yazan Duwayri
  • 通讯作者:
    Yazan Duwayri

Nader Nabile Massarweh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nader Nabile Massarweh', 18)}}的其他基金

Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10542758
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
  • 批准号:
    10641658
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
  • 批准号:
    10334529
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
  • 批准号:
    10187843
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
  • 批准号:
    10186540
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
  • 批准号:
    9692259
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Comparative effectiveness of real-time and episodic hospital surgical performance evaluation
实时与间歇式医院手术绩效评估的效果比较
  • 批准号:
    9370221
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
  • 批准号:
    7541665
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
  • 批准号:
    7812042
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:

相似海外基金

CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
  • 批准号:
    2348376
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
  • 批准号:
    10096804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CSR: Small: Enhancing Timeliness and Power-Efficiency of Real-Time Data Services
CSR:小:提高实时数据服务的及时性和能效
  • 批准号:
    2326796
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
  • 批准号:
    2324916
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
  • 批准号:
    2300321
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Methods to improve efficiency and robustness of clinical trials using information from real-world data with hidden bias
使用来自真实世界数据的信息(具有隐藏偏差)提高临床试验的效率和稳健性的方法
  • 批准号:
    10797500
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
TRACD - Transforming Rail Construction using Data: Digital frameworks for material efficiency and reducing carbon emissions
TRACD - 使用数据改造铁路建设:提高材料效率和减少碳排放的数字框架
  • 批准号:
    10063346
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
  • 批准号:
    2324915
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A new approach for traffic data management and modeling that combines storage efficiency and immediate knowledge extraction
一种结合存储效率和即时知识提取的交通数据管理和建模新方法
  • 批准号:
    23K17800
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了