Enhancing the Efficiency of Data Collection for Surgical Quality Improvement

提高数据收集效率以提高手术质量

基本信息

项目摘要

Background: Although the majority of national quality initiatives utilize electronic health record (EHR) or administrative data, their ability to adequately discriminate performance has been brought into question and it is unclear certain outcomes, such as postoperative complications, are accurately ascertained. By comparison, clinical registry data, like the VA Surgical Quality Improvement Program (VASQIP), are widely considered robust for performance evaluation and quality improvement (QI). But, VASQIP data collection is resource intensive—data are manually abstracted by trained local Surgical Quality Nurses (SQNs) for a systematic sample of surgical cases performed at all VA hospitals. VASQIP then uses the data to characterize the quality and safety of surgical care at each hospital based on risk-adjusted 30-day morbidity and mortality rates. Significance: VASQIP data collection practices present two important limitations. First, perioperative outcome rates have significantly decreased the past two decades making it unclear whether systematic case sampling is adequately powered to identify underperforming hospitals. Second, the time required for VASQIP data collection detracts from SQNs’ ability to engage in other important job functions, like local QI activities. Because SQNs spend substantial time working with VASQIP data, this represents an important missed opportunity to identify a quality problem when it is evolving rather than when it has already occurred. As such, alternative approaches that can provide reliable data and decrease the burden of data collection would have tangible benefits for other national surgical and non-surgical QI initiatives within VA and the private sector. Innovation: This project is novel because it can change the paradigm regarding the collection of QI data from purely EHR or clinical registry to a more efficient hybrid model that could address reliability concerns associated with the use of EHR (or administrative) data alone. It will also provide real-world, generalizable data that can only be obtained within VA's data platform and can inform VA and the private sector national surgical and non-surgical QI initiatives. We have two national operational partners: 1.) VA National Surgery Office (NSO); 2.) Office of Reporting, Analytics, Performance, Improvement, and Deployment (RAPID). Specific Aims: The overall goal is to address two important questions. First, given low perioperative outcome rates across VA, is systematic sampling robust enough to inform surgical QI? Second, are hybrid data (i.e.: EHR combined with clinical registry variables) a potentially reliable alternative for measuring VA hospital surgical performance? These questions will be explored through the following specific aims: (1) Evaluate whether analyzing all VASQIP-eligible surgical cases, relative to current systematic case sampling, improves negative predictive value (i.e.: decreases false negative rates) for identifying VA hospitals with outlier performance; (2) Compare the use of hybrid EHR and clinical registry data, relative to clinical registry alone, for evaluating risk-adjusted surgical performance at VA hospitals; (3) Explore how more efficient VASQIP data collection could enhance local QI efforts through in-depth, key informant interviews with SQNs. Methodology: This mixed-methods proposal will involve hospital-level, observational studies using VASQIP and Corporate Data Warehouse (CDW) data from patients who underwent non-cardiac surgery (2016-2019) as well as qualitative interviews with SQNs. With comparative effectiveness in mind, these data will be used to explore what would be observed if data from all surgical cases were included in VASQIP and to understand whether other existing VA data sources might improve VASQIP data collection efficiency and enhance local QI. Next Steps: With the NSO, we will prospectively compare the fidelity of hand-abstracted variables to automatable variables from CDW. The implementation plan (supported by the VA National Director of Surgery) will utilize VASQIP’s existing infrastructure by partnering with VINCI to provide the NSO with centralized CDW access (using RAPID’s data access model as a template) allowing automated data collection.
背景:虽然大多数国家质量倡议使用电子健康记录(EHR)或

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nader Nabile Massarweh其他文献

Examining Care Fragmentation After PAD Interventions: The Readmission Event
  • DOI:
    10.1016/j.jvs.2022.11.019
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Olamide Alabi;Nader Nabile Massarweh;Xinyan Zheng;Jialin Mao;Yazan Duwayri
  • 通讯作者:
    Yazan Duwayri

Nader Nabile Massarweh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nader Nabile Massarweh', 18)}}的其他基金

Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10542758
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
  • 批准号:
    10641658
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
  • 批准号:
    10187843
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
  • 批准号:
    10547734
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
  • 批准号:
    10186540
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
  • 批准号:
    9692259
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Comparative effectiveness of real-time and episodic hospital surgical performance evaluation
实时与间歇式医院手术绩效评估的效果比较
  • 批准号:
    9370221
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
  • 批准号:
    7541665
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
  • 批准号:
    7812042
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了