BLR&D Research Career Scientist Award Application
BLR
基本信息
- 批准号:10515312
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAttenuatedAwardAxonBiological AvailabilityBlood VesselsBone DevelopmentBone DiseasesBone SurfaceBone callusBone structureCellsCisplatinCommunicationConsumptionCouplingDiabetes MellitusEmbryonic DevelopmentEndocrineEnergy MetabolismEnergy consumptionEngineeringFemurFiberFractureGeneticGlucoseGoalsGrantHomeostasisHumanImpairmentInsulinInsulin ReceptorInvadedLengthLinkMacrophageMetabolicMetabolic DiseasesMetabolic PathwayMetabolismModelingMolecularMusMutationNerve BlockNerve FibersNerve Growth FactorsNeuropathyNeurotrophic Tyrosine Kinase Receptor Type 1OrganOsteoblastsOsteocalcinOsteocytesOsteoporosisPancreasPathway interactionsPenetrationPeriosteumPeripheralPhenotypePhysiologic OssificationPlayPopulationPreventionProcessProductionReceptor Protein-Tyrosine KinasesReceptor SignalingResearchRoleScientistSensorySignal TransductionSkeletal DevelopmentSkeletonStimulusStructureTamoxifenTimeTissuesTyrosine Kinase Receptor InhibitionUlna FracturesUnited States National Institutes of HealthVascularizationWalkingafferent nervebonebone cellbone fracture repairbone repaircareerfatty acid metabolismglobal healthinsulin secretionlong bonemineralizationmouse modelnerve supplyneuronal survivalneurotrophic factornovelnovel strategiesosteochondral tissueosteoprogenitor celloxidationpanaceapostnatalprogenitorrepairedresponseskeletalstromal progenitor
项目摘要
The skeleton is one of the most important structures in our bodies. Bones allow us to stand,
walk and move from one place to another, and they serve as protectors of our vital organs.
Degradation of our bones structure — osteoporosis — is a global health problem. The long-term
goal of my research is to understand the cellular and molecular mechanisms governing skeletal
development, homeostasis and repair. Currently, we are studying the coupling of bone cell
metabolic activity the role of sensory nerves in bone development and function.
Studies supported by my Merit Review Award identified a novel pathway that links the
metabolic activity of skeletal osteoblasts to global fuel metabolism and energy expenditure. Insulin
receptor signaling in the osteoblast regulates the production and bioavailability of osteocalcin, which
in turn, acts in an endocrine fashion to regulate pancreatic insulin secretion and peripheral insulin
responsiveness. The existence of this bone-panaceas endocrine loop suggests that bone
consumes a significant proportion of the body’s overall fuel supply, and consequently is in
competition with other energy consuming tissues. Currently, we are studying mouse models with
genetic alterations that selectively attenuate either glucose or fatty acid metabolism. These models
will be used to determine the fuel requirements of bone accrual and determine the impact of energy
substrate oxidation and metabolism by osteoblasts on global energy flux during post-natal bone
development and in response to discrete anabolic episodes. The importance of these metabolic
pathways humans is profoundly illustrated by metabolic diseases such as diabetes and
osteoporosis caused by genetic or environmental disturbances in endocrine control mechanisms.
In another project sponsored by NIH we are investigating the role of sensory nerves on bone
development and repair. Developing tissues dictate the amount and type of innervation they require
by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase
receptors. We show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase
receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization
and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons
penetrate perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers
of incipient ossification. Inactivation of TrkA signaling during embryogenesis in TrkA(F592A) mice
impaired innervation, delayed vascular invasion of the primary and secondary ossification centers,
decreased numbers of Osx-expressing osteoprogenitors, and decreased femoral length and volume.
These same phenotypic abnormalities were observed in mice following tamoxifen-induced disruption
of NGF in Col2-expressing perichondrial osteochondral progenitors. These findings indicate that
NGF serves as a skeletal neurotrophin to promote sensory innervation of developing long bones, a
process critical for normal primary and secondary ossification. Similarly, NGF-TrkA signaling played
an important role during fracture repair in mice engineered with conditional TrkA alleles. NGF-
enriched populations accumulated within the soft callus with progressive accumulation of
CGRP+TrkA+ sensory nerve fibers within the reactive periosteum, at time points preceding periosteal
vascularization, ossification, and mineralization. Temporal inhibition of TrkA catalytic activity by
administration of 1NMPP1 to TrkAF592A mice over time of fracture significantly reduced the numbers of
sensory fibers, blunted revascularization, and delayed consolidation of the callus. Delayed response
to fracture was also observed in mice following treatment with cisplatinum to induce neuropathy.
骨骼是我们体内最重要的结构之一。骨头让我们站起来,
步行并从一个地方移动到另一个地方,它们是我们重要器官的保护者。
我们的骨骼结构的降解 - 骨质疏松症 - 是一个全球健康问题。长期
我的研究的目标是了解控制骨骼的细胞和分子机制
开发,体内稳态和修复。目前,我们正在研究骨细胞的耦合
代谢活性感觉神经在骨发育和功能中的作用。
由我的优异评论奖支持的研究确定了一条新的途径
骨骼成骨细胞对全球燃料代谢和能量消耗的代谢活性。胰岛素
成骨细胞中的接收器信号传导调节骨钙素的生产和生物利用度
反过
响应能力。这种骨 - 五奈氏菌内分泌环的存在表明骨头
消耗了人体总体燃料供应的很大比例,因此
与其他消耗组织的竞争。目前,我们正在研究用
有选择地减弱葡萄糖或脂肪酸代谢的遗传改变。这些模型
将用于确定骨骼的燃料要求并确定能量的影响
在产后骨骼期间全球能量通量成骨细胞的底物氧化和代谢
开发和回应离散的合成代谢发作。这些代谢的重要性
途径是人类的代谢疾病,例如糖尿病和
内分泌控制机制中由遗传或环境灾害引起的骨质疏松症。
在NIH赞助的另一个项目中,我们正在研究感觉神经在骨头上的作用
开发和维修。开发组织决定了他们需要的神经的数量和类型
通过分泌神经营养蛋白,该神经营养通过激活不同的酪氨酸激酶来促进神经元存活
接收者。我们表明神经生长因子(NGF)通过神经营养酪氨酸激酶信号传导
受体1型(TRKA)指导发育中的小鼠股骨的神经支配以促进血管形成
和骨基源谱系进展。在初级骨化开始时,TRKA阳性轴突
穿透围骨骨表面,与中心相邻的细胞中的NGF表达一致
初期骨化。 TRKA(F592a)小鼠胚胎发生过程中TRKA信号传导的失活
神经受损,原发性和次级骨化中心的血管侵袭延迟,
扩大了表达OSX的骨基因生成剂的数量,并扩大了股骨长度和体积。
在他莫昔芬引起的破坏后,在小鼠中观察到了这些相同的表型异常
在表达COL2的骨软骨祖细胞中NGF的NGF。这些发现表明
NGF用作骨骼神经营养蛋白,以促进发育长骨的感觉神经
正常原发性和次级骨化的过程至关重要。同样,播放了NGF-Trka信号
在有条件的TRKA等位基因设计的小鼠中,在断裂修复过程中的重要作用。 ngf-
在软愈伤组织中积累的丰富种群,逐步积累
CGRP+ TRKA+感觉神经纤维在反应性骨膜内,在骨膜之前的时间点
血管化,骨化和矿化。时间抑制TRKA催化活性
随着时间的推移,将1NMPP1施用至TRKAF592A小鼠显着减少
感觉纤维,钝性的血运重建和愈合延迟。延迟响应
在用顺铂治疗后,在小鼠中也观察到骨折以诱导神经病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas L Clemens其他文献
Thomas L Clemens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas L Clemens', 18)}}的其他基金
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10785405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10704223 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10260104 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10512047 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10483206 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10378304 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10255877 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying new regulators of cardiac fibrosis and inflammation using zebrafish
使用斑马鱼识别心脏纤维化和炎症的新调节因子
- 批准号:
10892436 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Vitamin D and beta-amyloid signaling in hyperparathyroidism
甲状旁腺功能亢进症中的维生素 D 和 β-淀粉样蛋白信号传导
- 批准号:
10668177 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of plasma lipoprotein proteins and lipids as biomarkers of innate-immunity and vascular contributions to Alzheimer's disease and Alzheimer's disease-related dementias in older adults
鉴定血浆脂蛋白和脂质作为老年人阿尔茨海默病和阿尔茨海默病相关痴呆的先天免疫和血管贡献的生物标志物
- 批准号:
10660037 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing HTS assays for identifying NLK activators to target Huntington's disease
开发 HTS 检测方法来鉴定 NLK 激活剂以靶向亨廷顿病
- 批准号:
10783153 - 财政年份:2023
- 资助金额:
-- - 项目类别: