BLR&D Research Career Scientist Award Application
BLR
基本信息
- 批准号:10515312
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAttenuatedAwardAxonBiological AvailabilityBlood VesselsBone DevelopmentBone DiseasesBone SurfaceBone callusBone structureCellsCisplatinCommunicationConsumptionCouplingDiabetes MellitusEmbryonic DevelopmentEndocrineEnergy MetabolismEnergy consumptionEngineeringFemurFiberFractureGeneticGlucoseGoalsGrantHomeostasisHumanImpairmentInsulinInsulin ReceptorInvadedLengthLinkMacrophageMetabolicMetabolic DiseasesMetabolic PathwayMetabolismModelingMolecularMusMutationNerve BlockNerve FibersNerve Growth FactorsNeuropathyNeurotrophic Tyrosine Kinase Receptor Type 1OrganOsteoblastsOsteocalcinOsteocytesOsteoporosisPancreasPathway interactionsPenetrationPeriosteumPeripheralPhenotypePhysiologic OssificationPlayPopulationPreventionProcessProductionReceptor Protein-Tyrosine KinasesReceptor SignalingResearchRoleScientistSensorySignal TransductionSkeletal DevelopmentSkeletonStimulusStructureTamoxifenTimeTissuesTyrosine Kinase Receptor InhibitionUlna FracturesUnited States National Institutes of HealthVascularizationWalkingafferent nervebonebone cellbone fracture repairbone repaircareerfatty acid metabolismglobal healthinsulin secretionlong bonemineralizationmouse modelnerve supplyneuronal survivalneurotrophic factornovelnovel strategiesosteochondral tissueosteoprogenitor celloxidationpanaceapostnatalprogenitorrepairedresponseskeletalstromal progenitor
项目摘要
The skeleton is one of the most important structures in our bodies. Bones allow us to stand,
walk and move from one place to another, and they serve as protectors of our vital organs.
Degradation of our bones structure — osteoporosis — is a global health problem. The long-term
goal of my research is to understand the cellular and molecular mechanisms governing skeletal
development, homeostasis and repair. Currently, we are studying the coupling of bone cell
metabolic activity the role of sensory nerves in bone development and function.
Studies supported by my Merit Review Award identified a novel pathway that links the
metabolic activity of skeletal osteoblasts to global fuel metabolism and energy expenditure. Insulin
receptor signaling in the osteoblast regulates the production and bioavailability of osteocalcin, which
in turn, acts in an endocrine fashion to regulate pancreatic insulin secretion and peripheral insulin
responsiveness. The existence of this bone-panaceas endocrine loop suggests that bone
consumes a significant proportion of the body’s overall fuel supply, and consequently is in
competition with other energy consuming tissues. Currently, we are studying mouse models with
genetic alterations that selectively attenuate either glucose or fatty acid metabolism. These models
will be used to determine the fuel requirements of bone accrual and determine the impact of energy
substrate oxidation and metabolism by osteoblasts on global energy flux during post-natal bone
development and in response to discrete anabolic episodes. The importance of these metabolic
pathways humans is profoundly illustrated by metabolic diseases such as diabetes and
osteoporosis caused by genetic or environmental disturbances in endocrine control mechanisms.
In another project sponsored by NIH we are investigating the role of sensory nerves on bone
development and repair. Developing tissues dictate the amount and type of innervation they require
by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase
receptors. We show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase
receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization
and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons
penetrate perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers
of incipient ossification. Inactivation of TrkA signaling during embryogenesis in TrkA(F592A) mice
impaired innervation, delayed vascular invasion of the primary and secondary ossification centers,
decreased numbers of Osx-expressing osteoprogenitors, and decreased femoral length and volume.
These same phenotypic abnormalities were observed in mice following tamoxifen-induced disruption
of NGF in Col2-expressing perichondrial osteochondral progenitors. These findings indicate that
NGF serves as a skeletal neurotrophin to promote sensory innervation of developing long bones, a
process critical for normal primary and secondary ossification. Similarly, NGF-TrkA signaling played
an important role during fracture repair in mice engineered with conditional TrkA alleles. NGF-
enriched populations accumulated within the soft callus with progressive accumulation of
CGRP+TrkA+ sensory nerve fibers within the reactive periosteum, at time points preceding periosteal
vascularization, ossification, and mineralization. Temporal inhibition of TrkA catalytic activity by
administration of 1NMPP1 to TrkAF592A mice over time of fracture significantly reduced the numbers of
sensory fibers, blunted revascularization, and delayed consolidation of the callus. Delayed response
to fracture was also observed in mice following treatment with cisplatinum to induce neuropathy.
骨骼是我们身体最重要的结构之一。骨头让我们站立,
从一个地方步行并移动到另一个地方,它们是我们重要器官的保护者。
我们骨骼结构的退化——骨质疏松症——是一个全球性的健康问题。长期来看
我的研究目标是了解控制骨骼的细胞和分子机制
发育、稳态和修复。目前我们正在研究骨细胞的耦合
代谢活动感觉神经在骨骼发育和功能中的作用。
由我的优异评审奖支持的研究确定了一条将
骨骼成骨细胞的代谢活动对整体燃料代谢和能量消耗的影响。胰岛素
成骨细胞中的受体信号传导调节骨钙素的产生和生物利用度,骨钙素
反过来,以内分泌方式发挥作用,调节胰腺胰岛素分泌和外周胰岛素
反应能力。这种骨灵丹妙药内分泌循环的存在表明骨
消耗身体总燃料供应的很大一部分,因此处于
与其他耗能组织的竞争。目前,我们正在研究小鼠模型
选择性减弱葡萄糖或脂肪酸代谢的基因改变。这些型号
将用于确定骨生成的燃料需求并确定能量的影响
成骨细胞的底物氧化和代谢对出生后骨期间整体能量通量的影响
发育和对离散合成代谢事件的反应。这些代谢的重要性
糖尿病等代谢疾病深刻地说明了人类的通路
由遗传或环境内分泌控制机制紊乱引起的骨质疏松症。
在 NIH 赞助的另一个项目中,我们正在研究感觉神经对骨骼的作用
开发和修复。发育中的组织决定了它们所需的神经支配的数量和类型
通过分泌神经营养素,通过激活不同的酪氨酸激酶来促进神经元存活
受体。我们发现神经生长因子(NGF)信号通过神经营养酪氨酸激酶
1 型受体 (TrkA) 指导发育中小鼠股骨的神经支配以促进血管化
和骨祖细胞谱系进展。在初级骨化开始时,TrkA 阳性轴突
穿透软骨膜骨表面,与邻近中心的细胞中的 NGF 表达一致
早期骨化。 TrkA (F592A) 小鼠胚胎发生过程中 TrkA 信号失活
神经支配受损,初级和次级骨化中心的血管侵袭延迟,
表达 Osx 的骨祖细胞数量减少,股骨长度和体积减少。
在他莫昔芬诱导的破坏后,在小鼠中观察到这些相同的表型异常
表达 Col2 的软骨膜骨软骨祖细胞中 NGF 的作用。这些发现表明
NGF 作为骨骼神经营养蛋白,促进长骨发育的感觉神经支配,
对于正常的初级和次级骨化至关重要的过程。类似地,NGF-TrkA 信号发挥作用
在带有条件 TrkA 等位基因的小鼠骨折修复过程中发挥着重要作用。 NGF-
随着逐渐积累,软愈伤组织内积累了丰富的种群
反应性骨膜内的 CGRP+TrkA+ 感觉神经纤维,在骨膜之前的时间点
血管化、骨化和矿化。 TrkA 催化活性的暂时抑制
随着骨折时间的推移,对 TrkAF592A 小鼠施用 1NMPP1 显着减少了
感觉纤维、血运重建迟缓和骨痂固结延迟。反应迟缓
在用顺铂治疗诱导神经病变后,也观察到小鼠骨折。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas L Clemens其他文献
Thomas L Clemens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas L Clemens', 18)}}的其他基金
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10785405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10704223 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10260104 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10512047 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10483206 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10378304 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10255877 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
-- - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
-- - 项目类别:














{{item.name}}会员




