Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
基本信息
- 批准号:10704223
- 负责人:
- 金额:$ 46.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAfferent NeuronsAreaAxonBlood VesselsBone DiseasesCalvariaCell Differentiation processCell LineageCell ProliferationCellsCephalicCoculture TechniquesCollaborationsDataDermalFemurFiberFollistatinFundingGenetic TranscriptionGenomicsGrowthHistologicHomeHomeostasisHumanImpairmentIn VitroInfiltrationJoint structure of suture of skullKnock-in MouseLegal patentLocationMapsMediatingMesenchymalMesenchymal Stem CellsMethodsMicrofluidicsModelingMolecularMonitorMorphogenesisMusNatural regenerationNerveNerve FibersNerve Growth FactorsNeuronsNociceptionOsteogenesisPatternPeripheralPhenocopyPhenotypePhosphotransferasesPlayProliferatingRecombinantsRegulationReporterReportingRoleScaphycephalySensorySignal PathwaySignal TransductionSkeletal DevelopmentSurgical suturesTechniquesTimeTransgenic OrganismsTropomyosinUndifferentiatedUp-RegulationVascularizationadenovirus mediated deliveryafferent nerveangiogenesisbonebone repaircell behaviorcraniumgene networkgenetic signatureinhibitorinsightlimb regenerationmechanical loadnerve supplyneuralneuropathologyneurotropicosteogenicosteoprogenitor cellprematurepreservationprogramsreceptorrepairedresponseskeletalskeletal stem cellspatiotemporalstem cell expansionstem cell proliferationstem cellstime intervaltooltranscriptomics
项目摘要
ABSTRACT
This is a renewal application of a program investigating the role of sensory nerves in bone. Our studies
during the first funding period demonstrate that NGF-dependent TrkA signaling by sensory nerves is the
primary driver of angiogenesis and osteogenesis in the developing femur and skull. In these avascular
settings, acute up-regulation of NGF in mesenchymal lineage cell domains is followed by nociceptive fiber
ingrowth, which subsequently home to locations of proliferating mesenchymal cells. Blockade of sensory
nerve ingrowth, either by inhibition of TrkA signaling or disruption of NGF, retards vascularization and
disrupts femoral and calvarial bone formation. Histological data in the calvaria model revealed that loss
of sensory nerve fibers is associated with reduced numbers of proliferating mesenchymal progenitor cells
(MPCs) in the sutures and premature suture closure. These observations suggest a paradigm in which
sensory nerves function in developing bone to maintain MPC plasticity, a concept well established in
models of limb regeneration and supported by recent studies in developing mouse femur. Our preliminary
findings directly examining the interaction of sensory nerve axons with MPCs in microfluidic chambers
suggest that infiltrating DRG nerve fibers induce MPC proliferation, but limit differentiation in a non-contact
dependent fashion. These effects appear to be mediated by neural derived FSTL1, which induces MPC
proliferation and impairs BMP-induced osteogenic differentiation. Together, this data support the premise
that TrkA+ sensory nerves function in developing bone to maintain stem cells in a proliferative,
undifferentiated state by delivering soluble factors that activate mitogenic and anti-differentiation
signaling pathways.
This conceptual model will be explored in studies divided into two Specific Aims. Specific Aim 1 will define the
spatiotemporal patterning of TrkA+ skeletal sensory nerves in the developing cranium, determine their
influence on MPC proliferation and cellular fate, and further elucidate signaling pathways associated with
impaired innervation. Specific Aim 2 will identify sensory axon-derived factors that regulate MPC proliferation
and cell fate decisions, and definitively identifying FSTL1 as a neural-derived factor which impacts MPC
cellular behavior. Our results should provide new insights into the fundamental roles sensory nerves play in
skeletal morphogenesis, homeostasis and repair, and provide critical insight into the neuropathological
manifestations associated with bone disorders in humans.
抽象的
这是调查感觉神经在骨骼中的作用的程序的续签应用。我们的研究
在第一个资金期间
发育中的股骨和头骨中血管生成和成骨的主要驱动力。在这些血管中
设置,在间充质谱系细胞结构域中NGF的急性上调之后是伤害感受器
indrowth,后来又回到了增殖间充质细胞的位置。封锁感官
神经向内生长是通过抑制TRKA信号传导或NGF的破坏,会阻碍血管形成和
破坏股骨和颅骨形成。瓦尔瓦里亚模型中的组织学数据表明损失
感觉神经纤维与增殖的间充质祖细胞数量减少有关
(MPC)在缝合线和过早的缝合线闭合中。这些观察结果表明了一个范式
感觉神经在发展骨骼以维持MPC可塑性方面发挥作用,这是一个很好地确定的概念
肢体再生模型,并得到了近期发展小鼠股骨的研究的支持。我们的初步
发现直接检查感觉神经轴突与MPC在微流体腔中的相互作用
建议浸润DRG神经纤维会诱导MPC增殖,但限制了非接触式的分化
依赖的时尚。这些作用似乎是由诱导MPC的神经衍生的FSTL1介导的
增殖并损害BMP诱导的成骨分化。在一起,这些数据支持前提
TRKA+感觉神经在发育骨骼中起作用以维持增生性干细胞,
通过传递激活有丝分裂和抗差异的可溶因子,未分化的状态
信号通路。
该概念模型将在分为两个特定目标的研究中探索。特定目标1将定义
发育中的颅骨中TRKA+骨骼感觉神经的时空模式
对MPC增殖和细胞命运的影响,并进一步阐明与
神经受损。特定的目标2将确定调节MPC增殖的感觉轴突衍生的因素
和细胞命运的决策,并确定将FSTL1识别为影响MPC的神经衍生因素
细胞行为。我们的结果应为感官神经在
骨骼形态发生,稳态和修复,并为神经病理学提供了重要的见解
与人类骨骼疾病相关的表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas L Clemens其他文献
Thomas L Clemens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas L Clemens', 18)}}的其他基金
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10785405 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10260104 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10512047 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10483206 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10378304 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10255877 - 财政年份:2020
- 资助金额:
$ 46.58万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:62174130
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The role of SOCE in microglia and secondary degeneration after SCI
SOCE 在小胶质细胞和 SCI 后继发性变性中的作用
- 批准号:
10567211 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief - A Novel Low-Cost, Portable, Tampon-sized Thermal Transfer Device.
通过智能辐射监测进行有针对性的温度调节,可有效且持久地缓解无阿片类药物的盆腔疼痛 - 一种新型低成本、便携式、卫生棉条大小的热转印设备。
- 批准号:
10760002 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Mechanism of ultrasound neuromodulation effects on glucose homeostasis and diabetes
超声神经调节对葡萄糖稳态和糖尿病的影响机制
- 批准号:
10586211 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
A Pilot Clinical Trial of Paricalcitol for Chronic Pancreatitis
帕立骨化醇治疗慢性胰腺炎的初步临床试验
- 批准号:
10434603 - 财政年份:2022
- 资助金额:
$ 46.58万 - 项目类别:
Uncovering the interplay of calcium and calmodulin in regulation of TRPA1
揭示钙和钙调蛋白在 TRPA1 调节中的相互作用
- 批准号:
10610323 - 财政年份:2022
- 资助金额:
$ 46.58万 - 项目类别: