Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
基本信息
- 批准号:10704223
- 负责人:
- 金额:$ 46.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAfferent NeuronsAreaAxonBlood VesselsBone DiseasesCalvariaCell Differentiation processCell LineageCell ProliferationCellsCephalicCoculture TechniquesCollaborationsDataDermalFemurFiberFollistatinFundingGenetic TranscriptionGenomicsGrowthHistologicHomeHomeostasisHumanImpairmentIn VitroInfiltrationJoint structure of suture of skullKnock-in MouseLegal patentLocationMapsMediatingMesenchymalMesenchymal Stem CellsMethodsMicrofluidicsModelingMolecularMonitorMorphogenesisMusNatural regenerationNerveNerve FibersNerve Growth FactorsNeuronsNociceptionOsteogenesisPatternPeripheralPhenocopyPhenotypePhosphotransferasesPlayProliferatingRecombinantsRegulationReporterReportingRoleScaphycephalySensorySignal PathwaySignal TransductionSkeletal DevelopmentSurgical suturesTechniquesTimeTransgenic OrganismsTropomyosinUndifferentiatedUp-RegulationVascularizationadenovirus mediated deliveryafferent nerveangiogenesisbonebone repaircell behaviorcraniumgene networkgenetic signatureinhibitorinsightlimb regenerationmechanical loadnerve supplyneuralneuropathologyneurotropicosteogenicosteoprogenitor cellprematurepreservationprogramsreceptorrepairedresponseskeletalskeletal stem cellspatiotemporalstem cell expansionstem cell proliferationstem cellstime intervaltooltranscriptomics
项目摘要
ABSTRACT
This is a renewal application of a program investigating the role of sensory nerves in bone. Our studies
during the first funding period demonstrate that NGF-dependent TrkA signaling by sensory nerves is the
primary driver of angiogenesis and osteogenesis in the developing femur and skull. In these avascular
settings, acute up-regulation of NGF in mesenchymal lineage cell domains is followed by nociceptive fiber
ingrowth, which subsequently home to locations of proliferating mesenchymal cells. Blockade of sensory
nerve ingrowth, either by inhibition of TrkA signaling or disruption of NGF, retards vascularization and
disrupts femoral and calvarial bone formation. Histological data in the calvaria model revealed that loss
of sensory nerve fibers is associated with reduced numbers of proliferating mesenchymal progenitor cells
(MPCs) in the sutures and premature suture closure. These observations suggest a paradigm in which
sensory nerves function in developing bone to maintain MPC plasticity, a concept well established in
models of limb regeneration and supported by recent studies in developing mouse femur. Our preliminary
findings directly examining the interaction of sensory nerve axons with MPCs in microfluidic chambers
suggest that infiltrating DRG nerve fibers induce MPC proliferation, but limit differentiation in a non-contact
dependent fashion. These effects appear to be mediated by neural derived FSTL1, which induces MPC
proliferation and impairs BMP-induced osteogenic differentiation. Together, this data support the premise
that TrkA+ sensory nerves function in developing bone to maintain stem cells in a proliferative,
undifferentiated state by delivering soluble factors that activate mitogenic and anti-differentiation
signaling pathways.
This conceptual model will be explored in studies divided into two Specific Aims. Specific Aim 1 will define the
spatiotemporal patterning of TrkA+ skeletal sensory nerves in the developing cranium, determine their
influence on MPC proliferation and cellular fate, and further elucidate signaling pathways associated with
impaired innervation. Specific Aim 2 will identify sensory axon-derived factors that regulate MPC proliferation
and cell fate decisions, and definitively identifying FSTL1 as a neural-derived factor which impacts MPC
cellular behavior. Our results should provide new insights into the fundamental roles sensory nerves play in
skeletal morphogenesis, homeostasis and repair, and provide critical insight into the neuropathological
manifestations associated with bone disorders in humans.
摘要
这是一个更新的应用程序调查的作用,感觉神经在骨。我们的研究
在第一个资助期内,研究人员证明了感觉神经的NGF依赖性TrkA信号传导是
在发育中的股骨和颅骨中血管生成和骨生成的主要驱动力。在这些无血管的
在这种情况下,间充质谱系细胞结构域中的NGF的急性上调之后是伤害性纤维,
向内生长,其随后回到增殖间充质细胞的位置。感觉阻滞
通过抑制TrkA信号传导或破坏NGF,神经向内生长延缓血管形成,
破坏了股骨和颅骨的形成颅骨模型的组织学数据显示,
感觉神经纤维的减少与增殖间充质祖细胞数量的减少有关
(MPC)和缝线过早闭合。这些观察表明了一种范式,
感觉神经在骨骼发育中起作用,以维持MPC的可塑性,这一概念在
肢体再生的模型,并支持最近的研究在发展小鼠股骨。我们的初步
直接检查感觉神经轴突与微流控室中MPC相互作用的发现
提示浸润DRG神经纤维诱导MPC增殖,但限制了非接触性的分化。
依赖的方式。这些作用似乎是由神经源性FSTL 1介导的,其诱导MPC
增殖并损害BMP诱导的成骨分化。这些数据共同支持了
TrkA+感觉神经在骨发育中起作用,
通过递送激活促有丝分裂和抗分化的可溶性因子
信号通路
这个概念模型将在分为两个具体目标的研究中进行探讨。具体目标1将定义
TrkA+骨骼感觉神经在发育中的颅骨中的时空模式,确定其
对MPC增殖和细胞命运的影响,并进一步阐明与
神经支配受损特异性目标2将确定调控MPC增殖的感觉轴突衍生因子
和细胞命运决定,并明确确定FSTL 1作为影响MPC的神经源性因子
细胞行为我们的研究结果应该为感觉神经在神经系统中的基本作用提供新的见解。
骨骼形态发生,稳态和修复,并提供关键的洞察神经病理
与人类骨骼疾病相关的临床表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas L Clemens其他文献
Thomas L Clemens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas L Clemens', 18)}}的其他基金
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10785405 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10260104 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10512047 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10483206 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10378304 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10255877 - 财政年份:2020
- 资助金额:
$ 46.58万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 46.58万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 46.58万 - 项目类别:
Discovery Grants Program - Individual