Targeting Molecular Transducers of Exercise for Osteoarthritis Therapies
靶向运动分子传感器治疗骨关节炎
基本信息
- 批准号:10516067
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdipose tissueAffectAgonistAnalgesicsAnimal ModelAnimalsAnti-Inflammatory AgentsArthralgiaBiologicalBiological Response Modifier TherapyChronicConsumptionCouplingCumulative Trauma DisordersDataDegenerative polyarthritisDevelopmentDiseaseDrug DesignDrug TargetingEnvironmentExerciseExercise TherapyFatty AcidsFatty acid glycerol estersFibrosisFlow CytometryGeneral PopulationGlucoseGlycolysisGoalsHandHealthHistopathologyImageImpairmentInflammationInflammation MediatorsInflammatoryInjuryInterventionJointsKneeKnee OsteoarthritisKnee jointKnowledgeLipidsLipolysisMacrophageMacrophage ActivationMeasuresMedial meniscus structureMediatingMetabolicMetabolismMethodsModelingMolecularMolecular TargetMusNociceptionNon-Steroidal Anti-Inflammatory AgentsOperative Surgical ProceduresOpioidOralOutcomePPAR gammaPainPain managementPharmaceutical PreparationsPharmacological TreatmentPhenotypePhysical ExercisePhysical therapyPre-Clinical ModelProductionRegenerative MedicineResearchResolutionRiskRunningSynovial FluidSynovial MembraneSynovial jointTestingTherapeutic EffectTherapeutic UsesTimeTissue EngineeringTissuesTransducersTraumaTraumatic ArthropathyVeteransactive dutycytokinedisabilityengineered stem cellsexercise interventionfatty acid metabolismfatty acid oxidationfunctional improvementfunctional outcomesgait examinationgenetic approachimprovedimproved outcomein vivoinnovationinstrumentjoint inflammationlipid biosynthesislipid metabolismmechanical allodyniameniscus injurymouse geneticsmouse modelnanoparticlenovel strategiesnovel therapeutic interventionnovel therapeuticsosteoarthritis painpharmacologicphysically handicappedpreventresponserosiglitazoneside effecttissue-repair responsestreadmilluptake
项目摘要
Osteoarthritis (OA) disproportionately affects veterans, resulting in more pain and functional limitations
compared to the general population. No disease-modifying treatments exist for OA, and current pain
medications (e.g., opioids and NSAIDs) have limited long-term efficacy and adverse side effects. Unresolved
cellular and molecular joint inflammation is recognized as the central mechanism of OA progression. However,
a barrier to progress in the field is identifying the causes of chronic OA inflammation and how to resolve them.
The applicant's long-term goal for overcoming this barrier is to understand the molecular mechanisms of how
exercise therapy reduces OA inflammation and pain so that synergistic drug targets can be identified and
developed for therapeutic use. The premise of this application is that macrophages depend on lipid metabolism
reprogramming to complete anti-inflammatory alternative activation. The objective here is to determine how
intra-articular adipose tissue lipolysis modifies joint inflammation by regulating anti-inflammatory macrophage
polarization. The central hypothesis is that the resolution of joint inflammation requires the temporal coupling of
infra-patellar fat pad (IFP) lipolysis with macrophage lipid uptake and fatty acid metabolism to drive alternative
activation. This hypothesis has been developed based on the applicant's exciting preliminary data showing that
exercise triggers a transient induction of pro-inflammatory cytokines and macrophages in the knee synovium
and IFP, which fully resolves by day 14 of running. Notably, the induction and resolution of inflammation occurs
in parallel with a transient cycle of IFP lipolysis, fibrosis, and lipogenesis. The rationale for the proposed
research is that an understanding of the causal relationship between joint tissue metabolites and cellular
inflammatory mediators has the potential to generate new therapeutic opportunities by advancing fundamental
knowledge about how joint inflammation is regulated. With strong preliminary data and expertise in small
animal exercise, metabolism, and OA studies, the applicant will test the hypothesis by pursuing three specific
aims: 1) Determine how intra-articular adipose tissue lipolysis mediates macrophage activation, joint
inflammation, and post-traumatic OA; 2) Determine the effect of macrophage lipid uptake and fatty acid
oxidation on joint inflammation and the development of post-traumatic OA; and 3) Develop a combined
physical and biologic intervention strategy targeting lipid metabolism to reduce joint inflammation and pain in a
pre-clinical model of chronic knee OA. Aims 1 and 2 will be tested in mouse models of resolving and non-
resolving joint inflammation using wheel running and destabilization of the medial meniscus (DMM) models,
respectively. The models, which have been established as feasible in the applicant's hands, will be used to test
causal mechanisms that establish the pro- or anti-resolving effects of intra-articular lipids on joint inflammation.
In aim 1, these include an inducible genetic approach to block lipolysis in the joint or a pharmacologic
approach to enhance lipolysis. In the second aim, an inducible genetic approach will be used to inhibit
peroxisome proliferator activated receptor-γ (PPARγ) in macrophages or stimulate PPARγ pharmacologically.
The third aim combines physical and PPARγ pharmacologic treatments in the DMM model to test for
synergistic interactions that improve pain and function more than exercise alone. By focusing on the cellular
and molecular transducers of OA exercise therapy, the proposed research tests new, innovative paradigms for
designing drugs to potentiate the therapeutic effects of OA exercise therapy. The proposed research is
significant because it will initiate the systematic study of how synovial joint metabolism may be manipulated to
promote the resolution of joint inflammation. This knowledge is also expected to be important for other OA
therapies, such as optimizing the joint environment to support stem cell and tissue-engineering-based
regenerative medicine strategies.
骨关节炎(OA)不成比例地影响退伍军人,导致更多的疼痛和功能限制
与一般人群相比。OA和当前疼痛没有疾病修饰治疗
药物(例如,阿片类药物和NSAID)具有有限的长期功效和不良副作用。未解决
细胞和分子关节炎症被认为是OA进展的中心机制。然而,在这方面,
该领域进展的障碍是确定慢性OA炎症的原因以及如何解决它们。
申请人克服这一障碍的长期目标是了解如何在分子机制
运动疗法减少OA炎症和疼痛,从而可以鉴定协同药物靶点,
用于治疗用途。这种应用的前提是巨噬细胞依赖于脂质代谢
重新编程以完成抗炎替代激活。这里的目标是确定如何
关节内脂肪组织脂解通过调节抗炎巨噬细胞改变关节炎症
极化中心假设是,关节炎症的解决需要时间耦合,
髌骨下脂肪垫(IFP)脂肪分解与巨噬细胞脂质吸收和脂肪酸代谢,以推动替代方案
activation.这一假设是基于申请人令人兴奋的初步数据而提出的,这些数据表明,
运动触发膝关节滑膜中促炎细胞因子和巨噬细胞的短暂诱导
和IFP,它完全解决了第14天的运行。值得注意的是,炎症的诱导和消退发生在
与IFP脂解、纤维化和脂肪生成短暂循环并行。建议的理由
研究的重点是了解关节组织代谢物和细胞代谢物之间的因果关系,
炎症介质有可能通过推进基础治疗来创造新的治疗机会
了解关节炎症是如何调节的。凭借强大的初步数据和专业知识,
动物运动、代谢和OA研究,申请人将通过追求三个具体的
目的:1)确定关节内脂肪组织脂解如何介导巨噬细胞活化,关节
炎症和创伤后OA; 2)确定巨噬细胞脂质摄取和脂肪酸的影响
氧化对关节炎症和创伤后OA的发展;和3)开发一种组合的
针对脂质代谢的物理和生物干预策略,以减少关节炎症和疼痛,
慢性膝关节OA的临床前模型。目的1和2将在消退和非消退的小鼠模型中进行测试。
使用车轮运行和内侧半月板(DMM)模型的不稳定来解决关节炎症,
分别这些模型在申请人手中已经建立为可行的,将用于测试
确定关节内脂质对关节炎症的促进或抑制消退作用的因果机制。
在目标1中,这些包括一种可诱导的遗传方法来阻断关节中的脂解或药理学方法。
方法来增强脂肪分解。在第二个目标中,将使用诱导遗传方法来抑制
过氧化物酶体增殖物激活受体-γ(PPARγ)在巨噬细胞或刺激PPARγ。
第三个目的是在DMM模型中结合物理和PPARγ药物治疗,以测试
协同作用,改善疼痛和功能比单独锻炼。通过关注细胞
和分子换能器的OA运动疗法,拟议的研究测试新的,创新的范例,
设计药物以增强OA运动疗法的治疗效果。拟议的研究是
意义重大,因为它将启动如何操纵滑膜关节代谢的系统研究,
促进关节炎的消退。这方面的知识预计也将是重要的其他OA
治疗,例如优化关节环境以支持基于干细胞和组织工程的
再生医学战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY M GRIFFIN其他文献
TIMOTHY M GRIFFIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY M GRIFFIN', 18)}}的其他基金
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Optimizing the Host Environment for Intra-articular Osteoarthritis Therapies
CMA:缓解关节炎疼痛的软骨修复策略 (CaRe AP):优化关节内骨关节炎治疗的宿主环境
- 批准号:
10376737 - 财政年份:2020
- 资助金额:
-- - 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Optimizing the Host Environment for Intra-articular Osteoarthritis Therapies
CMA:缓解关节炎疼痛的软骨修复策略 (CaRe AP):优化关节内骨关节炎治疗的宿主环境
- 批准号:
9890590 - 财政年份:2020
- 资助金额:
-- - 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Optimizing the Host Environment for Intra-articular Osteoarthritis Therapies
CMA:缓解关节炎疼痛的软骨修复策略 (CaRe AP):优化关节内骨关节炎治疗的宿主环境
- 批准号:
10618788 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Targeting Molecular Transducers of Exercise for Osteoarthritis Therapies
靶向运动分子传感器治疗骨关节炎
- 批准号:
10292949 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Targeting Molecular Transducers of Exercise for Osteoarthritis Therapies
靶向运动分子传感器治疗骨关节炎
- 批准号:
10045511 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Targeting Molecular Transducers of Exercise for Osteoarthritis Therapies
靶向运动分子传感器治疗骨关节炎
- 批准号:
9780367 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Chondrocyte Metabolic Stress in the Development of Osteoarthritis
骨关节炎发展中的软骨细胞代谢应激
- 批准号:
9432273 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant