A serotonergic circuit controlling the circadian rhythm in Drosophila olfactory learning
控制果蝇嗅觉学习昼夜节律的血清素回路
基本信息
- 批准号:10509755
- 负责人:
- 金额:$ 13.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccidentsAcuteAddressAgeAlpha RhythmAnteriorAutomobile DrivingBehavioralBiological ModelsCircadian RhythmsCircadian desynchronyDendritesDissectionDorsalDrosophila genusDrosophila melanogasterEconomic BurdenEndogenous FactorsEventGoalsHealthHealthcare SystemsHumanImpaired cognitionIndividualInvertebratesLateralLearningLightLogicMemoryMethodsMissionModernizationMolecularMushroom BodiesNeurodegenerative DisordersNeuronsOlfactory LearningOrganismPathway interactionsPerformancePeriodicityPertussis ToxinPhasePhenotypePhysiologicalPopulationPublic HealthResearchRiskRoleSafetySerotoninSerotonin Receptor 5-HT1AShort-Term MemorySignal PathwaySignal TransductionSocietiesSpecificityStudy modelsSynapsesSystemTestingTimeTrainingUnited States National Institutes of HealthWorkcircadiancircadian pacemakercognitive functioncognitive performanceconnectomecosteconomic costexperimental studyimprovedinnovationinsightknock-downmemory acquisitionneural circuitneuromechanismneurotransmissionpressurepreventtherapeutic developmenttool
项目摘要
The endogenous circadian clock modulates performance and cognitive function with rhythms in learning and
memory evident across species. In our modern workforce individuals work at adverse circadian times resulting
in impaired cognitive performance in these individuals, in addition to economic costs and public safety risks to
society. Furthermore, circadian desynchronization, a rising public health problem, increases the risk of
neurodegenerative diseases and cognitive impairments, which is projected to put a substantial economic burden
on our healthcare system as the population ages. Defining the molecular mechanisms through which the
circadian clock targets learning is crucial to identifying methods to not only prevent cognitive impairments but
to optimize performance and health in modern society. The ability to enhance learning and memory at non-
adaptive times of day would represent a significant advance in human health and performance. The long-term
goal of this project is to define the neural circuits and molecular signaling pathways used by the central circadian
oscillator to enforce a rhythm in olfactory learning in Drosophila melanogaster. Drosophila displays a robust
circadian rhythm in short-term memory formation. The identity and function of both central clock neurons and
olfactory learning circuits are well established in Drosophila, with many tools available to manipulate neuronal
activity with great specificity, making Drosophila an ideal model for this study. The central hypothesis is that the
endogenous circadian circuit modulates neurotransmission from the serotonergic DAL neurons to the
Mushroom Bodies, activating 5-HT1A receptors in the Mushroom Bodies, resulting in circadian rhythms in
learning. The rationale for the proposed research is that understanding an evolutionarily conserved mechanism
for the circadian control of memory acquisition can be used to understand learning modulation better and to
improve cognitive performance. This understanding will be developed with two specific aims: 1) Determine the
role of the Dorsal Anterior Lateral Neurons in controlling the circadian rhythm in olfactory learning. 2)
Determine if 5HT1A signaling in the α/β posterior neurons is required for the rhythm in olfactory learning. The
proposed experiments will elucidate how and where the clock circuit alters the learning circuit. The approach is
innovative because it focuses on improving cognitive performance by identifying mechanisms through which the
circadian clock regulates learning to produce time-of-day dependent decrements in performance and cognitive
function. The proposed research is significant because the neurocircuitry and molecular mechanism by which
endogenous clocks directly regulate learning are poorly understood in any system. The impact of time-of-day on
cognitive performance is widespread, and the consequences of out-of-phase performance can be devastating and
costly. Ultimately, understanding the logic underlying circadian control of memory formation will permit further
work to improve human health, alleviate some of the pressure on our healthcare system, and lower the economic
burden from neurodegenerative diseases and cognitive impairment.
内源性生物钟通过学习和认知中的节律来调节表现和认知功能,
跨物种的记忆在我们的现代劳动力中,人们在不利的昼夜节律时间工作,导致
在这些人的认知能力受损,除了经济成本和公共安全风险,
社会此外,昼夜节律失调是一个日益严重的公共卫生问题,
神经退行性疾病和认知障碍,预计会造成巨大的经济负担
对我们的医疗系统的影响。通过定义分子机制,
生物钟目标学习对于确定方法至关重要,不仅可以预防认知障碍,
以优化现代社会的性能和健康。增强学习和记忆的能力,在非
一天中的适应性时间将代表人类健康和表现的重大进步。长期
这个项目的目标是确定中枢昼夜节律所使用的神经回路和分子信号通路
在果蝇嗅觉学习中,一个振荡器可以加强嗅觉学习的节奏。果蝇表现出一种强大的
短期记忆形成的昼夜节律。中枢生物钟神经元和
嗅觉学习回路在果蝇中建立得很好,有许多工具可以用来操纵神经元
活性具有很强的特异性,使果蝇成为这项研究的理想模型。核心假设是,
内源性昼夜节律回路调节从多巴胺能DAL神经元到
蘑菇体,激活蘑菇体中的5-HT 1A受体,导致昼夜节律,
学习这项研究的基本原理是,理解一种进化上保守的机制,
对于记忆获取的昼夜节律控制可以用来更好地理解学习调制,
提高认知能力。这种理解将通过两个具体目标来发展:1)确定
背前外侧神经元在嗅觉学习中控制昼夜节律的作用。(二)
确定α/β后部神经元中的5 HT 1A信号是否是嗅觉学习节律所必需的。的
所提出的实验将阐明时钟电路如何以及在何处改变学习电路。该方法是
创新,因为它专注于通过识别机制来改善认知表现,
生物钟调节学习,以产生一天中的时间依赖性的表现和认知能力的下降,
功能这项研究之所以重要,是因为神经回路和分子机制,
在任何系统中,对直接调节学习的内源性时钟都知之甚少。一天中的时间对
认知表现是普遍存在的,不同步表现的后果可能是毁灭性的,
很贵。最终,理解记忆形成的昼夜节律控制的逻辑将允许进一步的研究。
努力改善人类健康,减轻我们医疗保健系统的一些压力,并降低经济增长率。
神经退行性疾病和认知障碍的负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregg W Roman其他文献
Gregg W Roman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregg W Roman', 18)}}的其他基金
Mapping the Foci of Arrestin's Role in Ethanol Sedation
绘制 Arrestin 在乙醇镇静作用中的作用点
- 批准号:
7595246 - 财政年份:2008
- 资助金额:
$ 13.78万 - 项目类别:
Mapping the Foci of Arrestin's Role in Ethanol Sedation
绘制 Arrestin 在乙醇镇静作用中的作用点
- 批准号:
7305905 - 财政年份:2008
- 资助金额:
$ 13.78万 - 项目类别:
The Function of Arrestin in Drosophila Behavior
Arrestin 在果蝇行为中的作用
- 批准号:
6894812 - 财政年份:2002
- 资助金额:
$ 13.78万 - 项目类别:
The Function of Arrestin in Drosophila Behavior
Arrestin 在果蝇行为中的作用
- 批准号:
6751535 - 财政年份:2002
- 资助金额:
$ 13.78万 - 项目类别:
The Function of Arrestin in Drosophila Behavior
Arrestin 在果蝇行为中的作用
- 批准号:
6544272 - 财政年份:2002
- 资助金额:
$ 13.78万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 13.78万 - 项目类别:
Operating Grants














{{item.name}}会员




