Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
基本信息
- 批准号:10511534
- 负责人:
- 金额:$ 5.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
2.0 PROJECT SUMMARY
Undertreatment of childhood asthma is prevalent and often the right treatment for incident cases is unknown
hence the widespread use of therapeutic trials as a treatment strategy. Two-thirds of incident childhood asthma
cases continue to have persistent symptoms even after treatment initiation. Missed opportunities for early
efficacious treatment contribute to increased risk of childhood asthma-associated morbidity (i.e., uncontrolled
asthma) that exerts a substantial burden on patients, families, and the healthcare system. However, clinical
decision-making tools needed to identify which child will benefit from which treatment at an early stage are
currently lacking.
This proposal is predicated on the notion that applying novel machine learning (ML) methodologies to
increasingly available electronic health record (EHR) risk/prognostic data can generate predictive analytics and
insights regarding childhood asthma treatment response. Clinicians can then use such insights toward effective
treatment decision-making at point of care, including more proactive and personalized treatment, for improved
patient-centered outcomes. Although risk and prognostic factors needed for treatment response prediction are
often embedded in EHR, this information is sometimes overlooked by clinicians. In busy pediatric clinics, active
EHR review to identify such factors to inform treatment decisions can be costly, time consuming, error-prone,
and infeasible.
To address these challenges and technological gap, we propose to develop, validate, and evaluate a childhood
asthma Passive Digital Marker for treatment response prediction (PDM-TR), that is, a ML algorithm that can
retrieve and synthesize pre-existing `passively' collected mother-child dyad risk/prognostic data in `digital' EHR
to provide an objective and quantifiable `marker' of treatment response.
We hypothesize that when applied to risk/prognostic EHR data derived from incident asthma cases exposed to
first-line treatments, our PDM-TR will predict asthma control at 2-3 months with high accuracy (≥80 sensitivity
and ≥80 specificity). The PDM-TR will `learn from existing EHR data' to predict whether a specific treatment may
be successful (i.e., achieve asthma control) for a given individual with a specific set of attributes (i.e., asthma
risk and prognostic factors [e.g., history of allergy sensitization, eczema, demographics, lung function, body mass
index]). Applying our novel PDM-TR in-real time to readily available EHR data could contribute towards the
development of a timely, accurate and scalable approach to inform personalized childhood asthma treatment at
point of care.
2.0项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Hamie Owora其他文献
External validation and update of the pediatric asthma risk score as a passive digital marker for childhood asthma using integrated electronic health records
利用综合电子健康记录对儿科哮喘风险评分作为儿童哮喘的被动数字标志物进行外部验证和更新
- DOI:
10.1016/j.eclinm.2025.103254 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:10.000
- 作者:
Arthur Hamie Owora;Bowen Jiang;Yash Shah;Benjamin Gaston;Malaz Boustani - 通讯作者:
Malaz Boustani
Arthur Hamie Owora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Hamie Owora', 18)}}的其他基金
Developing a Childhood Asthma Risk Passive Digital Marker
开发儿童哮喘风险被动数字标记
- 批准号:
10571461 - 财政年份:2023
- 资助金额:
$ 5.74万 - 项目类别:
Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
- 批准号:
10670853 - 财政年份:2022
- 资助金额:
$ 5.74万 - 项目类别:
相似海外基金
Developing a Childhood Asthma Risk Passive Digital Marker
开发儿童哮喘风险被动数字标记
- 批准号:
10571461 - 财政年份:2023
- 资助金额:
$ 5.74万 - 项目类别:
Using Routine Care Electronic Medical Record Data and Artificial Intelligence to Develop a Passive Digital Marker to Predict Postoperative Delirium
使用常规护理电子病历数据和人工智能开发被动数字标记来预测术后谵妄
- 批准号:
10449523 - 财政年份:2022
- 资助金额:
$ 5.74万 - 项目类别:
Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
- 批准号:
10670853 - 财政年份:2022
- 资助金额:
$ 5.74万 - 项目类别:
Design and validation of a user interface to support digital passive exposure to unexpected information
设计和验证用户界面以支持数字被动暴露意外信息
- 批准号:
20K19932 - 财政年份:2020
- 资助金额:
$ 5.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
9929244 - 财政年份:2019
- 资助金额:
$ 5.74万 - 项目类别:
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
10245222 - 财政年份:2019
- 资助金额:
$ 5.74万 - 项目类别:
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
10478269 - 财政年份:2019
- 资助金额:
$ 5.74万 - 项目类别:
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
10022338 - 财政年份:2019
- 资助金额:
$ 5.74万 - 项目类别:
Sustainable Digital Fabrication of Low Energy Passive Wireless Sensors
低能耗无源无线传感器的可持续数字制造
- 批准号:
EP/L019728/1 - 财政年份:2014
- 资助金额:
$ 5.74万 - 项目类别:
Research Grant
Sustainable Digital Fabrication of Low Energy Passive Wireless Sensors
低能耗无源无线传感器的可持续数字制造
- 批准号:
EP/L019868/1 - 财政年份:2014
- 资助金额:
$ 5.74万 - 项目类别:
Research Grant














{{item.name}}会员




