Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
基本信息
- 批准号:10670853
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
2.0 PROJECT SUMMARY
Undertreatment of childhood asthma is prevalent and often the right treatment for incident cases is unknown
hence the widespread use of therapeutic trials as a treatment strategy. Two-thirds of incident childhood asthma
cases continue to have persistent symptoms even after treatment initiation. Missed opportunities for early
efficacious treatment contribute to increased risk of childhood asthma-associated morbidity (i.e., uncontrolled
asthma) that exerts a substantial burden on patients, families, and the healthcare system. However, clinical
decision-making tools needed to identify which child will benefit from which treatment at an early stage are
currently lacking.
This proposal is predicated on the notion that applying novel machine learning (ML) methodologies to
increasingly available electronic health record (EHR) risk/prognostic data can generate predictive analytics and
insights regarding childhood asthma treatment response. Clinicians can then use such insights toward effective
treatment decision-making at point of care, including more proactive and personalized treatment, for improved
patient-centered outcomes. Although risk and prognostic factors needed for treatment response prediction are
often embedded in EHR, this information is sometimes overlooked by clinicians. In busy pediatric clinics, active
EHR review to identify such factors to inform treatment decisions can be costly, time consuming, error-prone,
and infeasible.
To address these challenges and technological gap, we propose to develop, validate, and evaluate a childhood
asthma Passive Digital Marker for treatment response prediction (PDM-TR), that is, a ML algorithm that can
retrieve and synthesize pre-existing `passively' collected mother-child dyad risk/prognostic data in `digital' EHR
to provide an objective and quantifiable `marker' of treatment response.
We hypothesize that when applied to risk/prognostic EHR data derived from incident asthma cases exposed to
first-line treatments, our PDM-TR will predict asthma control at 2-3 months with high accuracy (≥80 sensitivity
and ≥80 specificity). The PDM-TR will `learn from existing EHR data' to predict whether a specific treatment may
be successful (i.e., achieve asthma control) for a given individual with a specific set of attributes (i.e., asthma
risk and prognostic factors [e.g., history of allergy sensitization, eczema, demographics, lung function, body mass
index]). Applying our novel PDM-TR in-real time to readily available EHR data could contribute towards the
development of a timely, accurate and scalable approach to inform personalized childhood asthma treatment at
point of care.
2.0项目摘要
儿童哮喘的治疗不足是普遍存在的,而且对于偶发病例的正确治疗往往是未知的
因此广泛使用治疗试验作为治疗策略。三分之二的儿童哮喘
病例甚至在治疗开始后仍有持续症状。错过了早期的机会
有效的治疗有助于增加儿童哮喘相关发病率的风险(即,不受控
哮喘),这对患者、家庭和医疗保健系统造成了巨大的负担。但临床
在早期阶段确定哪个儿童将受益于哪种治疗所需的决策工具,
目前缺乏。
这一提议是基于这样一个概念,即应用新的机器学习(ML)方法来
越来越多可用电子健康记录(EHR)风险/预后数据可以生成预测分析,
关于儿童哮喘治疗反应的见解。然后,临床医生可以使用这些见解,
护理点的治疗决策,包括更积极主动和个性化的治疗,
以患者为中心的结果。尽管治疗反应预测所需的风险和预后因素
这些信息通常嵌入在EHR中,有时会被临床医生忽视。在忙碌的儿科门诊,活跃
EHR审查以识别这些因素来告知治疗决策可能是昂贵的、耗时的、容易出错的,
而且不可行
为了应对这些挑战和技术差距,我们建议开发,验证和评估童年
哮喘治疗反应预测被动数字标记(PDM-TR),即ML算法,
在“数字”电子健康记录中检索和综合先前存在的“被动”收集的母婴二联体风险/预后数据
以提供治疗反应的客观和可量化的“标志物”。
我们假设,当应用于风险/预后EHR数据来自哮喘事件暴露于
一线治疗,我们的PDM-TR将预测2-3个月时的哮喘控制,具有高准确性(灵敏度≥80
特异性≥80)。PDM-TR将“从现有的EHR数据中学习”,以预测特定的治疗是否可能
成功(即,实现哮喘控制)对于具有特定属性集合的给定个体(即,哮喘
风险和预后因素[例如,过敏史、湿疹、人口统计学、肺功能、体重
index])。将我们的新型PDM-TR实时应用于现成的EHR数据可以有助于
开发及时、准确和可扩展的方法,为个性化的儿童哮喘治疗提供信息,
护理点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Hamie Owora其他文献
External validation and update of the pediatric asthma risk score as a passive digital marker for childhood asthma using integrated electronic health records
利用综合电子健康记录对儿科哮喘风险评分作为儿童哮喘的被动数字标志物进行外部验证和更新
- DOI:
10.1016/j.eclinm.2025.103254 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:10.000
- 作者:
Arthur Hamie Owora;Bowen Jiang;Yash Shah;Benjamin Gaston;Malaz Boustani - 通讯作者:
Malaz Boustani
Arthur Hamie Owora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Hamie Owora', 18)}}的其他基金
Developing a Childhood Asthma Risk Passive Digital Marker
开发儿童哮喘风险被动数字标记
- 批准号:
10571461 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
- 批准号:
10511534 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
相似海外基金
Developing a Childhood Asthma Risk Passive Digital Marker
开发儿童哮喘风险被动数字标记
- 批准号:
10571461 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Using Routine Care Electronic Medical Record Data and Artificial Intelligence to Develop a Passive Digital Marker to Predict Postoperative Delirium
使用常规护理电子病历数据和人工智能开发被动数字标记来预测术后谵妄
- 批准号:
10449523 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
- 批准号:
10511534 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Design and validation of a user interface to support digital passive exposure to unexpected information
设计和验证用户界面以支持数字被动暴露意外信息
- 批准号:
20K19932 - 财政年份:2020
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
9929244 - 财政年份:2019
- 资助金额:
$ 4.16万 - 项目类别:
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
10245222 - 财政年份:2019
- 资助金额:
$ 4.16万 - 项目类别:
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
10478269 - 财政年份:2019
- 资助金额:
$ 4.16万 - 项目类别:
SCH: INT: Collaborative Research: Passive sensing of social isolation: A digital phenotying approach
SCH:INT:协作研究:社会隔离的被动感知:数字表型方法
- 批准号:
10022338 - 财政年份:2019
- 资助金额:
$ 4.16万 - 项目类别:
Sustainable Digital Fabrication of Low Energy Passive Wireless Sensors
低能耗无源无线传感器的可持续数字制造
- 批准号:
EP/L019728/1 - 财政年份:2014
- 资助金额:
$ 4.16万 - 项目类别:
Research Grant
Sustainable Digital Fabrication of Low Energy Passive Wireless Sensors
低能耗无源无线传感器的可持续数字制造
- 批准号:
EP/L019868/1 - 财政年份:2014
- 资助金额:
$ 4.16万 - 项目类别:
Research Grant