Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
基本信息
- 批准号:10512763
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAffectAlcohol abuseAllelesBase PairingBiologyBipolar DisorderCellsCharacteristicsCollaborationsComplexCoronary heart diseaseCustomDataData SetDatabasesDevelopmentDiseaseEnvironmental Risk FactorEpigenetic ProcessFeeling suicidalFunctional disorderGene ExpressionGene Expression ProfilingGene Expression RegulationGenerationsGenesGeneticGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectGlucoseGoalsHuman GeneticsHyperlipidemiaHypertensionIndividualLeadLinkLinkage DisequilibriumLipidsMachine LearningMediatingMedicalMental DepressionMolecularMolecular ProfilingMyocardialMyocardial InfarctionNon-Insulin-Dependent Diabetes MellitusPathway interactionsPatientsPatternPhenotypePost-Traumatic Stress DisordersPreventionProcessPublishingQuantitative Trait LociRecording of previous eventsRegulationRegulatory ElementResearchResearch PersonnelRoleSamplingSchizophreniaScientistTestingTimeTissuesTranslatingUnited States Department of Veterans AffairsUntranslated RNAVariantVeteranscardiometabolismcohortdesigndifferential expressiondisorder riskdrug discoveryeconomic costepigenomeepigenomicsgene functiongene interactiongene networkgenetic analysisgenetic variantgenome wide association studygenome-widegenomic locushigh dimensionalityhuman tissueindividualized medicineinterestlarge scale datamedication administrationmortalityneuropsychiatryphenotypic dataprecision medicinepredictive modelingpreventprogramsrecurrent depressionrisk variantstudy populationtraittranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
Precision Medicine refers to the customization of medical treatment to the individual characteristics of each
patient. The Million Veteran Program (MVP) provides a unique opportunity to perform large-scale genome-wide
association studies (GWAS) and further our understanding of Precision Medicine across multiple traits and
diseases. While well powered GWAS have identified multiple risk variants, there has been limited conclusive
findings on the genetic factors contributing to complex traits due to small effect sizes. In addition, the majority
of common risk variants are within non-coding regions of the genome and, as such, the functional relevance of
most discovered loci remains unclear. Our group and others have shown that a large portion of phenotypic
variability in disease risk can be explained by regulatory variants, i.e. genetic variants that affect epigenetic
mechanisms and the expression levels of genes. Studying gene expression and epigenome changes directly in
MVP samples is not feasible as such data are not available. To overcome these limitations, we propose to
apply a machine learning approach that leverages existing molecular data (unrelated to MVP) as a reference
panel and directly impute multi-tissue and genome-wide gene expression and epigenome profiles in MVP
samples using the existing MVP genotypes. As reference panel, we will use large-scale datasets with
genotyping and molecular profiling that our group and others have generated, including, but not limited to, the
CommonMind consortium, psychENCODE, AD-AMP, STARNET and GTEx. Imputed MVP gene expression
and epigenome data provides a powerful cohort to “translate” genetic findings to dysregulation of specific
molecular pathways across multiple traits that will enhance drug discovery. We propose to study gene
expression and epigenome perturbations in neuropsychiatric -- including schizophrenia, bipolar disorder, post-
traumatic stress disorder, alcohol abuse, recurrent depression and suicidal ideations -- and cardiometabolic --
including type 2 diabetes, hypertension, hyperlipidemia, coronary heart disease, history of myocardial infarction
and bloodwork-quantified (glucose, Hb1Ac and lipid profile) -- traits. These disease-associated signatures can
be further explored in terms of enrichment with specific molecular networks. We propose to construct tissue
specific weighted gene-gene interaction and causal probabilistic networks and assess the enrichment with
disease-associated signatures to identify subnetworks, molecular processes and key drivers. Overall, the scale
of data generation and its integration into predictive models will provide a wealth of data for other diseases
beyond the immediate goals of this proposal that have the potential to increase our understanding of Precision
Medicine.
项目摘要
精准医疗是指针对每个人的个体特征定制医疗
病人百万退伍军人计划(MVP)提供了一个独特的机会,进行大规模的全基因组
关联研究(GWAS),并进一步了解精准医学在多个性状和
疾病虽然有力的GWAS已经确定了多种风险变体,但结论性的
研究结果的遗传因素有助于复杂的性状,由于小的影响大小。此外,大多数
的常见风险变异是在基因组的非编码区,因此,
大多数已发现的基因座仍不清楚。我们的研究小组和其他人已经表明,大部分表型
疾病风险的变异性可以用调控变异来解释,即影响表观遗传的遗传变异。
基因的表达水平。研究基因表达和表观基因组的变化直接在
MVP样品不可行,因为此类数据不可用。为了克服这些限制,我们建议
应用机器学习方法,利用现有的分子数据(与MVP无关)作为参考
MVP中的多组织和全基因组基因表达和表观基因组谱的面板和直接插补
使用现有MVP基因型的样本。作为参考面板,我们将使用大规模数据集,
基因分型和分子分析,我们的小组和其他人已经产生,包括,但不限于,
CommonMind联盟、psychENCODE、AD-AMP、STARNET和GTEx。插补MVP基因表达
和表观基因组数据提供了一个强大的队列,以“翻译”遗传发现,以失调的具体
跨多种性状的分子途径,这将促进药物发现。我们建议研究基因
表达和表观基因组扰动神经精神-包括精神分裂症,双相情感障碍,后,
创伤应激障碍,酗酒,复发性抑郁症和自杀意念--以及心脏代谢--
包括2型糖尿病、高血压、高脂血症、冠心病、心肌梗死病史
和血液定量(葡萄糖,Hb 1Ac和血脂)-性状。这些与疾病相关的特征可以
在特定分子网络的富集方面进行进一步探索。我们建议构建组织
特定的加权基因-基因相互作用和因果概率网络,并评估富集与
与疾病相关的特征,以确定子网络,分子过程和关键驱动因素。总体而言,规模
数据生成及其集成到预测模型中将为其他疾病提供丰富的数据
超出了本提案的直接目标,有可能增加我们对精确度的理解
药
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Roussos其他文献
Panagiotis Roussos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Roussos', 18)}}的其他基金
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
- 批准号:
10724843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multiethnic genomic epigenomic and transcriptomic fine-mapping and functional validation analysis of schizophrenia and bipolar disorder risk loci
精神分裂症和躁郁症风险位点的多种族基因组表观基因组和转录组精细定位和功能验证分析
- 批准号:
10541205 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multiethnic genomic epigenomic and transcriptomic fine-mapping and functional validation analysis of schizophrenia and bipolar disorder risk loci
精神分裂症和躁郁症风险位点的多种族基因组表观基因组和转录组精细定位和功能验证分析
- 批准号:
10116719 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multiethnic genomic epigenomic and transcriptomic fine-mapping and functional validation analysis of schizophrenia and bipolar disorder risk loci
精神分裂症和双相情感障碍风险位点的多种族基因组表观基因组和转录组精细定位和功能验证分析
- 批准号:
10323051 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
- 批准号:
10584192 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
- 批准号:
10436137 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
- 批准号:
9483393 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Risk genetic variants and cis regulation of gene expression in Bipolar Disorder
双相情感障碍的风险遗传变异和基因表达的顺式调控
- 批准号:
9082676 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Higher Order Chromatin and Genetic Risk for Alzheimer's Disease
高阶染色质和阿尔茨海默病的遗传风险
- 批准号:
10317310 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Higher Order Chromatin and Genetic Risk for Alzheimer's Disease
高阶染色质和阿尔茨海默病的遗传风险
- 批准号:
9134035 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists